Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 244-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An algorithm of Newton–Kantorovich method's application for finding solutions (including nonunique solutions) of nonlinear equilibrium equations in discrete mechanical systems with nonconvex potential function is suggested. The algorithm is applied for solving the problem of finding equilibrium parameters of the mechanical system that implements a triaxial stretching of an elementary cube made of a nonlinear material.
Keywords: gradient system, nonconvex potential function, equilibrium equation, nonunique solutions, Newton–Kantorovich method.
@article{TIMM_2013_19_1_a23,
     author = {V. V. Struzhanov and N. V. Burmasheva},
     title = {Newton{\textendash}Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--252},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/}
}
TY  - JOUR
AU  - V. V. Struzhanov
AU  - N. V. Burmasheva
TI  - Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 244
EP  - 252
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/
LA  - ru
ID  - TIMM_2013_19_1_a23
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%A N. V. Burmasheva
%T Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 244-252
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/
%G ru
%F TIMM_2013_19_1_a23
V. V. Struzhanov; N. V. Burmasheva. Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 244-252. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/

[1] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[2] Gilmor R., Prikladnaya teoriya katastrof, v 2-kh kn., Kn. 1, Mir, M., 1984, 350 pp. | Zbl

[3] M. A. Krasnoselskii [i dr.], Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[4] Kantorovich L. V., Akilov G. T., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR

[5] Kolmogorov A. N., Fomin S. P., Elementy teorii funktsii i funktsionalnogo naliza, Nauka, M., 1972, 496 pp. | MR

[6] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. | MR

[7] Sheidakov D. N., “Ustoichivost pryamougolnoi plity pri dvukhosnom rastyazhenii”, Prikl. mekhanika i tekhnich. fizika, 48:4 (2007), 94–103 | MR

[8] Lure A. I., Teoriya uprugosti, Nauka, M., 1970, 940 pp.

[9] Nikitin A. V., Ryzhak E. I., “Ob ustoichivosti i neustoichivosti szhatogo brusa, prizhatogo k gladkomu osnovaniyu”, Izv. RAN. Mekhanika tverdogo tela, 2008, no. 4, 42–58

[10] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.

[11] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[12] Struzhanov V. V., Prosviryakov E. Yu., Burmasheva N. V., “Ob odnom metode postroeniya edinogo potentsiala”, Vychisl. mekhanika sploshn. sred, 1:2 (2008), 96–107