Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 244-252
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An algorithm of Newton–Kantorovich method's application for finding solutions (including nonunique solutions) of nonlinear equilibrium equations in discrete mechanical systems with nonconvex potential function is suggested. The algorithm is applied for solving the problem of finding equilibrium parameters of the mechanical system that implements a triaxial stretching of an elementary cube made of a nonlinear material.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
gradient system, nonconvex potential function, equilibrium equation, nonunique solutions, Newton–Kantorovich method.
                    
                  
                
                
                @article{TIMM_2013_19_1_a23,
     author = {V. V. Struzhanov and N. V. Burmasheva},
     title = {Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--252},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/}
}
                      
                      
                    TY - JOUR AU - V. V. Struzhanov AU - N. V. Burmasheva TI - Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 244 EP - 252 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/ LA - ru ID - TIMM_2013_19_1_a23 ER -
%0 Journal Article %A V. V. Struzhanov %A N. V. Burmasheva %T Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems %J Trudy Instituta matematiki i mehaniki %D 2013 %P 244-252 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/ %G ru %F TIMM_2013_19_1_a23
V. V. Struzhanov; N. V. Burmasheva. Newton--Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 244-252. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/
