@article{TIMM_2013_19_1_a23,
author = {V. V. Struzhanov and N. V. Burmasheva},
title = {Newton{\textendash}Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {244--252},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/}
}
TY - JOUR AU - V. V. Struzhanov AU - N. V. Burmasheva TI - Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 244 EP - 252 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/ LA - ru ID - TIMM_2013_19_1_a23 ER -
%0 Journal Article %A V. V. Struzhanov %A N. V. Burmasheva %T Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems %J Trudy Instituta matematiki i mehaniki %D 2013 %P 244-252 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/ %G ru %F TIMM_2013_19_1_a23
V. V. Struzhanov; N. V. Burmasheva. Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 244-252. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a23/
[1] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR
[2] Gilmor R., Prikladnaya teoriya katastrof, v 2-kh kn., Kn. 1, Mir, M., 1984, 350 pp. | Zbl
[3] M. A. Krasnoselskii [i dr.], Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR
[4] Kantorovich L. V., Akilov G. T., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR
[5] Kolmogorov A. N., Fomin S. P., Elementy teorii funktsii i funktsionalnogo naliza, Nauka, M., 1972, 496 pp. | MR
[6] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. | MR
[7] Sheidakov D. N., “Ustoichivost pryamougolnoi plity pri dvukhosnom rastyazhenii”, Prikl. mekhanika i tekhnich. fizika, 48:4 (2007), 94–103 | MR
[8] Lure A. I., Teoriya uprugosti, Nauka, M., 1970, 940 pp.
[9] Nikitin A. V., Ryzhak E. I., “Ob ustoichivosti i neustoichivosti szhatogo brusa, prizhatogo k gladkomu osnovaniyu”, Izv. RAN. Mekhanika tverdogo tela, 2008, no. 4, 42–58
[10] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.
[11] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR
[12] Struzhanov V. V., Prosviryakov E. Yu., Burmasheva N. V., “Ob odnom metode postroeniya edinogo potentsiala”, Vychisl. mekhanika sploshn. sred, 1:2 (2008), 96–107