On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 226-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind is investigated. A definition of classical solution is introduced for this problem. The Fourier method is used to reduce the problem to a system of integral equations. The method of contraction mappings is applied to prove the existence and uniqueness of a solution of the system of integral equations. Then, the existence and uniqueness of a classical solution of the initial problem is proved.
Keywords: inverse boundary value problem, Fourier method, classical solution.
Mots-clés : elliptic equation
@article{TIMM_2013_19_1_a21,
     author = {Ya. T. Megraliev},
     title = {On an inverse boundary value problem for a~second-order elliptic equation with integral condition of the first kind},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--235},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a21/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
TI  - On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 226
EP  - 235
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a21/
LA  - ru
ID  - TIMM_2013_19_1_a21
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%T On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 226-235
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a21/
%G ru
%F TIMM_2013_19_1_a21
Ya. T. Megraliev. On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 226-235. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a21/

[1] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:4 (1943), 195–198 | MR

[2] Lavrentev M. M., “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520–521 | MR

[3] Lavrentev M. M., Romanov V. G., Shishatskii S. T., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 288 pp. | MR

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[5] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994, 206 pp.

[6] Solovev V. V., “Obratnye zadachi opredeleniya istochnika dlya uravneniya Puassona na ploskosti”, Zhurn. vychisl. matematiki i mat. fiziki, 44:5 (2004), 862–871 | MR | Zbl

[7] Solovev V. V., “Obratnye zadachi dlya ellipticheskikh uravnenii na ploskosti”, Differents. uravneniya, 42:8 (2006), 1106–1114 | MR

[8] Megraliev Ya. T., “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka”, Vest. Bakin. un-ta. Ser. fiz.-mat. nauk, 2011, no. 2, 31–39

[9] Megraliev Ya. T., “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnym integralnym usloviem”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 1, 32–40

[10] Megraliev Ya. T., “O razreshimosti odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka”, Vest. Tver. gos. un-ta. Prikl. matematika, 2011, no. 23, 25–38

[11] Kaliev I. A., Sabitova M. M., “Zadachi opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sib. zhurn. industr. matematiki, 12:1(37) (2009), 89–97 | MR | Zbl

[12] Ionkin N. I., Moiseev E. I., “O zadache dlya uravneniya teploprovodnosti s dvutochechnymi kraevymi usloviyami”, Differents. uravneniya, 15:7 (1979), 1284–1295 | MR | Zbl

[13] Moiseev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 35:8 (1999), 1094–1100 | MR | Zbl