Solution of a $2$-constrained pseudo-inversion problem by a relaxation method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 217-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A regularizing algorithm based on the solution of the Cauchy problem for a second-order linear differential equation in a Hilbert space is proposed for solving a $2$-constrained pseudo-inversion problem. Conditions are found for the stabilization of a solution of the Cauchy problem to a normal solution of this problem in the case of perturbed input data.
Keywords: $2$-constrained pseudo-solution to an operator equation in a Hilbert space, normal $2$-constrained pseudo-solution, relaxation method, $2$-constrained pseudo-inversion problem.
@article{TIMM_2013_19_1_a20,
     author = {N. L. Manokhina and R. A. Shafiev},
     title = {Solution of a~$2$-constrained pseudo-inversion problem by a~relaxation method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--225},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a20/}
}
TY  - JOUR
AU  - N. L. Manokhina
AU  - R. A. Shafiev
TI  - Solution of a $2$-constrained pseudo-inversion problem by a relaxation method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 217
EP  - 225
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a20/
LA  - ru
ID  - TIMM_2013_19_1_a20
ER  - 
%0 Journal Article
%A N. L. Manokhina
%A R. A. Shafiev
%T Solution of a $2$-constrained pseudo-inversion problem by a relaxation method
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 217-225
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a20/
%G ru
%F TIMM_2013_19_1_a20
N. L. Manokhina; R. A. Shafiev. Solution of a $2$-constrained pseudo-inversion problem by a relaxation method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 217-225. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a20/

[1] Vasin V. V., Ageev A. A., Nekorrektnye zadachi s apriornoi informatsiei, UIF “Nauka”, Ekaterinburg, 1993, 261 pp. | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[3] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986, 184 pp. | MR

[4] Bondar E. A., Yastrebova I. Yu., “Metod ustanovleniya dlya zadachi svyazannogo psevdoobrascheniya s priblizhennymi dannymi”, Izv. Chelyab. nauch. tsentra, 2005, no. 1(27), 1–6 | MR

[5] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987, 360 pp. | MR

[6] Minamide N., Nakamura K., “A restricted pseudoinverse and its application to constrained minima”, SIAM J. Appl. Math., 19 (1970), 167–177 | DOI | MR | Zbl

[7] Groetsch C. W., “Regularization with linear equality constraints”, Lect. Notes Math., 1225, 1986, 168–181 | DOI | MR | Zbl

[8] Shafiev R. A., Psevdoobraschenie operatorov i nekotorye prilozheniya, Elm, Baku, 1989, 152 pp. | MR

[9] Yastrebova I. Yu., Normalnoe $n$-svyazannoe psevdoreshenie uravneniya i regulyarnye metody ego vychisleniya, Dep. v VINITI No 3388-1399, N. Novgorod, 1999, 19 pp.

[10] Uvarov V. E., Shafiev R. A., “Iteratsionnyi metod regulyarizatsii zadachi 2-svyaznogo psevdoobrascheniya dlya operatornogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 46:10 (2006), 1735–1743 | MR

[11] Sadovnichii V. A., Teoriya operatorov, uch. dlya vuzov, 4-e izd., Drofa, M., 2001, 384 pp.