Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd $q$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 25-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

All pairs of semiproportional irreducible characters (in other terms, small $D$-blocks) of symplectic groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ are obtained for odd $q$. In particular, two earlier-known conjectures on such pairs of characters in an arbitrary finite group are verified for these groups.
Keywords: finite symplectic groups, character table, semiproportional characters, small interactions.
@article{TIMM_2013_19_1_a2,
     author = {V. A. Belonogov},
     title = {Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd~$q$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--40},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd $q$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 25
EP  - 40
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a2/
LA  - ru
ID  - TIMM_2013_19_1_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd $q$
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 25-40
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a2/
%G ru
%F TIMM_2013_19_1_a2
V. A. Belonogov. Semiproportional irreducible characters of the groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$ for odd $q$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a2/

[1] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 379 pp. | MR

[2] Belonogov V. A., “Vzaimodeistviya i $D$-bloki v konechnykh gruppakh”, Podgruppovaya struktura grupp, Izd-vo UrO AN SSSR, Sverdlovsk, 1988, 4–44 | MR

[3] Belonogov V. A., “O malykh vzaimodeistviyakh v konechnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, 1992, 3–18 | Zbl

[4] Belonogov V. A., “Malye vzaimodeistviya v gruppakh $\mathrm{GL}_3(q)$, $\mathrm{GU}_3(q)$, $\mathrm{PGL}_3(q)$ i $\mathrm{PGU}_3(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4, 1996, 17–47 | MR | Zbl

[5] Belonogov V. A., “Malye vzaimodeistviya v gruppakh $\mathrm{SL}_3(q)$, $\mathrm{SU}_3(q)$, $\mathrm{PSL}_3(q)$ i $\mathrm{PSU}_3(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, 1998, 3–27 | Zbl

[6] 6 Belonogov V. A., “Malye vzaimodeistviya v gruppakh $\mathrm{Sp}_4(q)$ pri chëtnykh $q$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 19–37

[7] Belonogov V. A., “K gipoteze o poluproportsionalnykh kharakterakh”, Sib. mat. zhurn., 46:2 (2005), 299–314 | MR | Zbl

[8] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Srinivasan B., “The characters of the finite symplectic group $\mathrm{Sp}(4,q)$”, Trans. Amer. Math. Soc., 131:2 (1968), 488–525 | MR | Zbl

[10] Przygocki A., “Schur indices of Symplectic groups”, Commun. Algebra, 10:3 (1982), 279–310 | DOI | MR | Zbl

[11] Belonogov V. A., “K gipoteze o poluproportsionalnykh kharakterakh v gruppakh $\mathrm{Sp}_4(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 30–46

[12] Wlodarski L., “On the equation $\cos\alpha_1+\cos\alpha_2+\cos\alpha_3+\cos\alpha_4=0$”, Ann. Univ. Budapestinensis, 12 (1969), 147–156 | MR