On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 196-204

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problem of dynamic reconstruction of unknown inputs acting on a linear vector differential equation with delay. A regularizing algorithm is proposed for reconstructing these inputs simultaneously with the process. The algorithm is stable with respect to information noises and computational errors. It is based on the method of positionally controlled auxiliary models.
Mots-clés : dynamic reconstruction
Keywords: method of auxiliary models.
@article{TIMM_2013_19_1_a18,
     author = {V. I. Maksimov},
     title = {On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 196
EP  - 204
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/
LA  - ru
ID  - TIMM_2013_19_1_a18
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 196-204
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/
%G ru
%F TIMM_2013_19_1_a18
V. I. Maksimov. On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 196-204. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/