On the application of finite-dimensional controlled models in the problem of input reconstruction in a linear delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 196-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss the problem of dynamic reconstruction of unknown inputs acting on a linear vector differential equation with delay. A regularizing algorithm is proposed for reconstructing these inputs simultaneously with the process. The algorithm is stable with respect to information noises and computational errors. It is based on the method of positionally controlled auxiliary models.
Mots-clés : dynamic reconstruction
Keywords: method of auxiliary models.
@article{TIMM_2013_19_1_a18,
     author = {V. I. Maksimov},
     title = {On the application of finite-dimensional controlled models in the problem of input reconstruction in a~linear delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {196--204},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On the application of finite-dimensional controlled models in the problem of input reconstruction in a linear delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 196
EP  - 204
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/
LA  - ru
ID  - TIMM_2013_19_1_a18
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On the application of finite-dimensional controlled models in the problem of input reconstruction in a linear delay system
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 196-204
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/
%G ru
%F TIMM_2013_19_1_a18
V. I. Maksimov. On the application of finite-dimensional controlled models in the problem of input reconstruction in a linear delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 196-204. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a18/

[1] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[2] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011, 292 pp.

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[5] Maksimov V. I., “Pozitsionnoe modelirovanie nekotorykh parametrov differentsialno-funktsionalnykh sistem”, Nekotorye metody pozitsionnogo i programmnogo upravleniya, Sb. nauch. tr., In-t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1987, 84–106 | MR

[6] Osipov Yu. S., “On reconstruction of a parameter of dynamical system”, Proc. int. symp. “Functional-Differential Equations”, Kyoto, 1990, 309–317

[7] Maksimov V. I., “Metod funktsii Lyapunova v zadachakh rekonstruktsii vkhodov sistem s posledeistviem”, Sovremennaya matematika i ee prilozheniya, 26, 2005, 78–95

[8] Blizorukova M. S., “O modelirovanii vkhoda v sisteme s zapazdyvaniem”, Prikl. matematika i informatika, Sb. tr. fak-ta VMiK MGU im. M. V. Lomonosova, MAKS Press, M., 2000, 105–115

[9] Vasileva E. V., “Dinamicheskii metod nevyazki dlya differentsialnogo uravneniya s pamyatyu”, Problemy matematicheskoi fiziki, Sb. tr. fakulteta VMiK MGU im. M. V. Lomonosova, Dialog-MGU, M., 1998, 68–74

[10] Kadiyev A. M., Maksimov V. I., “Dynamical discrepancy method in an input reconstruction problem for a delay system”, Funct. Differ. Equ., 15:3–4 (2008), 219–237 | MR | Zbl

[11] Maksimov V., Pandolfi L., “On a dynamical identification of controls in nonlinear time-lag system”, IMA J. Math. Control Inform., 19:1–2 (2002), 173–184 | DOI | MR | Zbl

[12] Kryazhimskii A. V., Osipov Yu. S., “Differentsialno-raznostnaya igra sblizheniya s funktsionalnym tselevym mnozhestvom”, Prikl. matematika i mekhanika, 37:1 (1973), 3–13 | MR | Zbl

[13] Kryazhimskii A. V., Maksimov V. I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, Prikl. matematika i mekhanika, 42:2 (1978), 202–209 | MR

[14] Maksimov V. I., “Approksimatsiya nelineinykh differentsialno-raznostnykh igr”, Tr. In-ta matematiki i mekhaniki, Sb. st., 30, Sverdlovsk, 1979, 49–65 | MR | Zbl

[15] Kryazhimskii A. V., “Differentsialno-raznostnaya igra ukloneniya ot funktsionalnoi tseli”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 4, 71–79