@article{TIMM_2013_19_1_a16,
author = {D. R. Kuvshinov},
title = {Numerical construction of {Nash} solutions in a~two-player linear positional differential game in which the phase space has more than two dimensions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {170--181},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a16/}
}
TY - JOUR AU - D. R. Kuvshinov TI - Numerical construction of Nash solutions in a two-player linear positional differential game in which the phase space has more than two dimensions JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 170 EP - 181 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a16/ LA - ru ID - TIMM_2013_19_1_a16 ER -
%0 Journal Article %A D. R. Kuvshinov %T Numerical construction of Nash solutions in a two-player linear positional differential game in which the phase space has more than two dimensions %J Trudy Instituta matematiki i mehaniki %D 2013 %P 170-181 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a16/ %G ru %F TIMM_2013_19_1_a16
D. R. Kuvshinov. Numerical construction of Nash solutions in a two-player linear positional differential game in which the phase space has more than two dimensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 170-181. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a16/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR
[3] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 184 pp. | MR
[4] Kuvshinov D. R., “Algoritm chislennogo postroeniya reshenii po Neshu v pozitsionnoi differentsialnoi igre dvukh lits”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 81–90
[5] Kleimenov A. F., Kuvshinov D. R., Osipov S. I., “Chislennoe postroenie reshenii Nesha i Shtakelberga v lineinoi neantagonisticheskoi pozitsionnoi differentsialnoi igre dvukh lits”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 120–133
[6] Computational Geometry Algorithms Library, URL: http://www.cgal.org/
[7] Chazelle B., “An optimal convex hull algorithm in any fixed dimension”, Discrete Comput. Geom., 10 (1993), 377–409 | DOI | MR | Zbl
[8] Isakova E. A., Logunova G. V., Patsko V. S., “Postroenie stabilnykh mostov v lineinoi differentsialnoi igre s fiksirovannym momentom okonchaniya”, Algoritmy i programmy resheniya lineinykh differentsialnykh igr, materialy po matematicheskomu obespecheniyu EVM, IMM UNTs AN SSSR, Sverdlovsk, 1984, 127–158
[9] Botkin N. D., Ryazantseva E. A., “Algoritm postroeniya mnozhestva razreshimosti v lineinoi differentsialnoi igre vysokoi razmernosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, 1992, 128–134 | MR | Zbl
[10] E. S. Polovinkin [i dr.], “Ob odnom algoritme chislennogo resheniya lineinykh differentsialnykh igr”, Mat. sb., 192:10 (2001), 95–122 | DOI | MR | Zbl
[11] Shorikov A. F., Minimaksnoe otsenivanie i upravlenie v diskretnykh dinamicheskikh sistemakh, Izd-vo Ural. un-ta, Ekaterinburg, 1997, 241 pp. | MR | Zbl
[12] Shorikov A. F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh dinamicheskikh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 2, Ekaterinburg, 2000, 515–535 | MR | Zbl
[13] Kamzolkin D. V., Metody resheniya nekotorykh klassov zadach optimalnogo upravleniya i differentsialnykh igr, Dis. $\dots$ kand. fiz.-mat. nauk, Moskva, 2005, 116 pp.
[14] Zarkh M. A., Ivanov A. G., “Postroenie funktsii tseny v lineinoi differentsialnoi igre s fiksirovannym momentom okonchaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, 1992, 140–155 | MR | Zbl
[15] Pontryagin L. S., “Lineinye differentsialnye igry, 2”, Dokl. AN SSSR, 175:4 (1967), 764–766 | Zbl
[16] Kuvshinov D. R., “Chislennoe postroenie reshenii po Neshu v pozitsionnoi differentsialnoi igre dvukh lits s fazovym prostranstvom razmernosti bolshe dvukh”, Teoriya upravleniya i matematicheskoe modelirovanie, Tr. konf., Izd-vo IzhGTU, Izhevsk, 2012, 33–35
[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.
[18] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968, 488 pp. | MR | Zbl
[19] Hart P. E., Nilsson N. J., Raphael B., “A formal basis for the heuristic determination of minimum cost paths”, IEEE Trans. Syst. Science and Cybernetics, 4:2 (1968), 100–107 | DOI