Reconstruction of distributed controls in parabolic systems by a dynamic method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 160-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of reconstructing a priori unknown distributed controls in parabolic systems from results of approximate measurements of states of the system's observed motion. The problem is solved in the dynamic variant, when a current approximation of the unknown control is found only from the measurements received no later than the current time. The problem under consideration is ill-posed. We propose to solve it by the method of dynamic regularization and construct new dynamic regularization algorithms, which provide a strengthened convergence of regularized approximations, in particular, their piecewise uniform convergence. A finite-dimensional approximation of the problem is carried out and results of numerical simulation are presented.
Keywords: dynamic system, control, measurement, inverse problem, regularization, method of dynamic regularization
Mots-clés : reconstruction, observation, variation, piecewise uniform convergence.
@article{TIMM_2013_19_1_a15,
     author = {A. I. Korotkii and D. O. Mikhailova},
     title = {Reconstruction of distributed controls in parabolic systems by a~dynamic method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {160--169},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a15/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. O. Mikhailova
TI  - Reconstruction of distributed controls in parabolic systems by a dynamic method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 160
EP  - 169
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a15/
LA  - ru
ID  - TIMM_2013_19_1_a15
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. O. Mikhailova
%T Reconstruction of distributed controls in parabolic systems by a dynamic method
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 160-169
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a15/
%G ru
%F TIMM_2013_19_1_a15
A. I. Korotkii; D. O. Mikhailova. Reconstruction of distributed controls in parabolic systems by a dynamic method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 160-169. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a15/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[3] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[4] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999, 237 pp.

[5] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 304 pp.

[6] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[7] Korotkii A. I., “Obratnye zadachi dinamiki upravlyaemykh sistem s raspredelennymi parametrami”, Izv. vuzov. Matematika, 1995, no. 11, 101–124 | MR | Zbl

[8] Korotkii A. I., Pryamye i obratnye zadachi upravlyaemykh sistem s raspredelennymi parametrami, Dis. $\dots$ d-ra fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 1993, 331 pp.

[9] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functional”, J. Inv. Ill-Posed Problems, 15:8 (2007), 853–865 | MR | Zbl

[10] Korotkii M. A., “Vosstanovlenie upravlenii staticheskim i dinamicheskim metodami regulyarizatsii s negladkimi stabilizatorami”, Prikl. matematika i mekhanika, 73:1 (2009), 39–53 | MR

[11] Korotkii M. A., Metod regulyarizatsii Tikhonova s negladkimi stabilizatorami, Dis. $\dots$ kand. fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 2009, 132 pp.

[12] Korotkii A. I., Mikhailova D. O., “Vosstanovlenie upravlenii v parabolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 211–227

[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[15] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 312 pp. | MR | Zbl