A two-person non-antagonistic positional differential game with integral and vector payoffs of the players
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 130-135
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-person non-antagonistic positional differential game is considered on a given time interval. The payoff functional of the first player is the sum of integral and terminal components, whereas the second player has a vector terminal payoff functional. Both players know the value of the state vector of the system at the current time. In addition, the first player knows the value of the control of the second player. The second player acts in the class of pure positional strategies, and the first player acts in the class of positional counter-strategies. The notion of Nash-type solution of the game is introduced. A problem whose solutions are the basis for the construction of Nash-type equilibria is formulated.
Keywords: non-antagonistic positional differential game, vector criteria, integral and terminal payoff functionals, Nash-type equilibrium solution.
@article{TIMM_2013_19_1_a12,
     author = {A. F. Kleimenov},
     title = {A two-person non-antagonistic positional differential game with integral and vector payoffs of the players},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--135},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a12/}
}
TY  - JOUR
AU  - A. F. Kleimenov
TI  - A two-person non-antagonistic positional differential game with integral and vector payoffs of the players
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 130
EP  - 135
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a12/
LA  - ru
ID  - TIMM_2013_19_1_a12
ER  - 
%0 Journal Article
%A A. F. Kleimenov
%T A two-person non-antagonistic positional differential game with integral and vector payoffs of the players
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 130-135
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a12/
%G ru
%F TIMM_2013_19_1_a12
A. F. Kleimenov. A two-person non-antagonistic positional differential game with integral and vector payoffs of the players. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 130-135. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a12/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, New York, 1999, 519 pp. | Zbl

[4] Tolwinski B., Haurie A., Leitman G., “Cooperative equilibria in differential games”, J. Math. Anal. Appl., 119:1–2 (1986), 182–202 | DOI | MR | Zbl

[5] Kononenko A. F., “O ravnovesnykh pozitsionnykh strategiyakh v neantagonisticheskikh differentsialnykh igrakh”, Dokl. AN SSSR, 231:2 (1976), 285–288 | MR | Zbl

[6] Zhukovskiy V. I., Salukvadze M. E., The vector-valued maximum, Academic Press, New York, 1994, 404 pp. | MR | Zbl

[7] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 184 pp. | MR

[8] Krasovskii A. N., “Nelineinaya differentsialnaya igra s integralnoi platoi”, Differents. uravneniya, 18:8 (1982), 1306–1312 | MR

[9] Kleimenov A. F., “Universalnoe reshenie v neantagonisticheskoi pozitsionnoi differentsialnoi igre s vektornymi kriteriyami”, Tr. Instituta matematiki i mekhaniki UrO RAN, 1, 1992, 97–105 | MR | Zbl

[10] Kleimenov A. F., “Equilibrium coalitional mixed strategies in differential games of $m$ players”, Probl. Control Inform. Theory, 11:2 (1982), 85–95 | MR | Zbl