Truncated dynamic programming method in a~closed traveling salesman problem with symmetric value function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 121-129

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the exact solution of a closed traveling salesman problem with symmetric value function based on the dynamic programming method is presented. The method produces an optimal solution in a smaller number of operations as compared to the classical dynamic programming method. A short experiment, which compares the efficiencies of the classical scheme and of the new scheme in traveling salesman problems of different dimensions, is given in the end of the paper.
Keywords: dynamic programming method, traveling salesman problem.
@article{TIMM_2013_19_1_a11,
     author = {E. E. Ivanko},
     title = {Truncated dynamic programming method in a~closed traveling salesman problem with symmetric value function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a11/}
}
TY  - JOUR
AU  - E. E. Ivanko
TI  - Truncated dynamic programming method in a~closed traveling salesman problem with symmetric value function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 121
EP  - 129
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a11/
LA  - ru
ID  - TIMM_2013_19_1_a11
ER  - 
%0 Journal Article
%A E. E. Ivanko
%T Truncated dynamic programming method in a~closed traveling salesman problem with symmetric value function
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 121-129
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a11/
%G ru
%F TIMM_2013_19_1_a11
E. E. Ivanko. Truncated dynamic programming method in a~closed traveling salesman problem with symmetric value function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 121-129. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a11/