Asymptotic expansion of a solution to the problem of optimal control of a bounded flow at a boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 115-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of optimal control of solutions to an elliptic-type equation with a small coefficient at the Laplace operator and integral constraints on the control is considered in a bounded domain with smooth boundary. The control is effected by a bounded flow through the boundary. A complete asymptotic expansion of a solution to this problem in powers of the small parameter is obtained.
Keywords: optimal control, elliptic-type differential equation, asymptotic estimates.
@article{TIMM_2013_19_1_a10,
     author = {A. P. Zorin},
     title = {Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--120},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/}
}
TY  - JOUR
AU  - A. P. Zorin
TI  - Asymptotic expansion of a solution to the problem of optimal control of a bounded flow at a boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 115
EP  - 120
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/
LA  - ru
ID  - TIMM_2013_19_1_a10
ER  - 
%0 Journal Article
%A A. P. Zorin
%T Asymptotic expansion of a solution to the problem of optimal control of a bounded flow at a boundary
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 115-120
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/
%G ru
%F TIMM_2013_19_1_a10
A. P. Zorin. Asymptotic expansion of a solution to the problem of optimal control of a bounded flow at a boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 115-120. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[2] Danilin A. R., Zorin A. P., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 95–107

[3] Danilin A. R., Zorin A. P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo granichnogo upravleniya”, Dokl. RAN, 440:4 (2011), 1–4 | MR

[4] Danilin A. R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Mat. sb., 189:11 (1998), 27–60 | DOI | MR | Zbl

[5] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | DOI | MR | Zbl

[6] Kapustyan V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy, 1992, no. 2, 70–74, (Matematika, estestvoznanie, tekhnicheskie nauki) | MR

[7] Kapustyan V. E., “Optimalnye bisingulyarnye ellipticheskie zadachi s ogranichennym upravleniem”, Dokl. AN Ukrainy, 1993, no. 6, 81–85 | MR

[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[9] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl