Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 115-120

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of optimal control of solutions to an elliptic-type equation with a small coefficient at the Laplace operator and integral constraints on the control is considered in a bounded domain with smooth boundary. The control is effected by a bounded flow through the boundary. A complete asymptotic expansion of a solution to this problem in powers of the small parameter is obtained.
Keywords: optimal control, elliptic-type differential equation, asymptotic estimates.
@article{TIMM_2013_19_1_a10,
     author = {A. P. Zorin},
     title = {Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/}
}
TY  - JOUR
AU  - A. P. Zorin
TI  - Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 115
EP  - 120
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/
LA  - ru
ID  - TIMM_2013_19_1_a10
ER  - 
%0 Journal Article
%A A. P. Zorin
%T Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 115-120
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/
%G ru
%F TIMM_2013_19_1_a10
A. P. Zorin. Asymptotic expansion of a~solution to the problem of optimal control of a~bounded flow at a~boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 115-120. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a10/