Optimization problems for a differential inclusion with random initial data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 12-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Optimization problems for a differential inclusion with convex-valued right-hand side are considered. The initial state of the inclusion is not given exactly; it is either a random vector or, more generally, an element of some random closed set. It is necessary to find a trajectory of the inclusion that minimizes the expected value of a function of the inclusion's terminal state or, more generally, a similar trajectory that minimizes the Choquet integral. Assumptions are given under which the Choquet integral is reduced to the usual integral with respect to a probability measure. The obtained results are used to derive sufficient optimality conditions in the mentioned optimization problems; these conditions are also necessary in certain cases. A prototype of such problems is the problem of controling an ensemble of trajectories. On the other hand, the necessity of studying control problems with random data in the form of sets arises in the solution of motion correction problems, where a random set appears naturally at the observation stage. Examples are given.
Keywords: optimization, random set, control system.
Mots-clés : inclusion, Choquet integral
@article{TIMM_2013_19_1_a1,
     author = {B. I. Anan'ev},
     title = {Optimization problems for a~differential inclusion with random initial data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--24},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a1/}
}
TY  - JOUR
AU  - B. I. Anan'ev
TI  - Optimization problems for a differential inclusion with random initial data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 12
EP  - 24
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a1/
LA  - ru
ID  - TIMM_2013_19_1_a1
ER  - 
%0 Journal Article
%A B. I. Anan'ev
%T Optimization problems for a differential inclusion with random initial data
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 12-24
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a1/
%G ru
%F TIMM_2013_19_1_a1
B. I. Anan'ev. Optimization problems for a differential inclusion with random initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 12-24. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a1/

[1] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[2] Schmitendorf W. E., “Minimax control of systems with uncertainty in the initial state and in the state equations”, IEEE Trans. Automat. Control, AC-22:3 (1971), 439–443

[3] Ovsyannikov D. A., Matematicheskie metody upravleniya puchkami, Nauka, L., 1980, 228 pp. | MR

[4] Filippova T. F., “Upravlenie v usloviyakh neopredelennosti sistemoi s negladkoi pravoi chastyu”, Differents. uravneniya, 19:10 (1983), 1693–1699 | MR

[5] Filippova T. F., “Ob odnom dostatochnom uslovii optimalnosti v zadache upravleniya ansamblem dvizhenii”, Otsenivanie dinamiki upravlyaemykh dvizhenii, Sb. st., Izd-vo UrO RAN, Sverdlovsk, 1988, 111–118

[6] Ananev B. I., “Mnogokratnaya korrektsiya dvizheniya statisticheski neopredelennykh sistem”, Tr. mezhdunar. konf. “Problemy upravleniya i prilozheniya”, v. 1, Izd-vo In-ta matematiki NAN Belarusi, Minsk, 2005, 97–102

[7] Ananev B. I., “Korrektsiya dvizheniya statisticheski neopredelennoi sistemy pri kommunikatsionnykh ogranicheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 20–31

[8] Ananev B. I., “Otsenivanie sluchainykh informatsionnykh mnozhestv mnogoshagovykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 35–41 | MR

[9] Ananev B. I., “Optimalnye kanaly svyazi s shumom v zadachakh otsenivaniya i korrektsii dvizheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 15–29

[10] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 169, 1985, 194–252 | MR | Zbl

[11] Smirnov G. V., Introduction to the theory of differential inclusions, Graduate Studies in Math., 41, AMS, Providence, 2002, 226 pp. | MR | Zbl

[12] Mordukhovich B. S., Variational analysis and generalized differentiation, v. II, A series of comprehensive studies in mathematics, 331, Applications, Springer, Berlin, 2006, 610 pp. | MR

[13] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR

[14] Himmelberg C. J., “Measurable relations”, Fundamenta Matematicae, 87 (1975), 53–72 | MR | Zbl

[15] Molchanov I., Theory of random sets, Springer, New York, 2005, 488 pp. | MR

[16] Choquet G., “Theory of capacities”, Ann. Inst. Fourier, 5 (1953), 131–295 | DOI | MR

[17] Nguyen H. T., An introduction to random sets, Chapman Hall, 2006, 257 pp. | MR | Zbl

[18] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie, Nauka, M., 1985, 279 pp. | MR | Zbl

[19] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Springer, New York, 1998, 276 pp. | MR

[20] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 167 pp. | MR | Zbl

[21] Klark F., Optimizatsiya i negladkii analiz, Mir, M., 1988, 280 pp. | MR