On antiproximinal sets in Grothendieck spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 90-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Under some constraints on a Grothendieck space, we prove that this space contains a closed convex bounded antiproximinal set for some Lindenstrauss spaces. A fact that was proved earlier by the author for a classical space $C(Q)$ is now proved for some Lindenstrauss spaces.
Mots-clés : antiproximinal set
Keywords: Grothendieck spaces.
@article{TIMM_2012_18_4_a7,
     author = {V. S. Balaganskii},
     title = {On antiproximinal sets in {Grothendieck} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {90--103},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On antiproximinal sets in Grothendieck spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 90
EP  - 103
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/
LA  - ru
ID  - TIMM_2012_18_4_a7
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On antiproximinal sets in Grothendieck spaces
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 90-103
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/
%G ru
%F TIMM_2012_18_4_a7
V. S. Balaganskii. On antiproximinal sets in Grothendieck spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 90-103. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/

[1] Cobzaş S., “Antiproximinal sets in Banach spaces”, Acta Univ. Carolin. Math. Phys., 40:2 (1999), 43–52 | MR | Zbl

[2] Blatter J., Grothendieck spaces in approximation theory, Memoirs of the Amer. Math. Soc., 120, Providence, RI, 1972, 121 pp. | MR | Zbl

[3] Balaganskii V. S., “Antiproksiminalnalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Mat. zametki, 60:5 (1996), 643–657 | DOI | MR | Zbl

[4] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961, 233 pp.

[5] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren math. Wiss., 171, Springer-Verlag, Berlin, 1970, 415 pp. | MR | Zbl

[6] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, IL, M., 1962, 895 pp.

[7] Aleksandryan R. A., Mirzakharyan E. A., Obschaya topologiya, “Vysshaya shkola”, M., 1979, 336 pp. | Zbl