Keywords: Grothendieck spaces.
@article{TIMM_2012_18_4_a7,
author = {V. S. Balaganskii},
title = {On antiproximinal sets in {Grothendieck} spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {90--103},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/}
}
V. S. Balaganskii. On antiproximinal sets in Grothendieck spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 90-103. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a7/
[1] Cobzaş S., “Antiproximinal sets in Banach spaces”, Acta Univ. Carolin. Math. Phys., 40:2 (1999), 43–52 | MR | Zbl
[2] Blatter J., Grothendieck spaces in approximation theory, Memoirs of the Amer. Math. Soc., 120, Providence, RI, 1972, 121 pp. | MR | Zbl
[3] Balaganskii V. S., “Antiproksiminalnalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Mat. zametki, 60:5 (1996), 643–657 | DOI | MR | Zbl
[4] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961, 233 pp.
[5] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren math. Wiss., 171, Springer-Verlag, Berlin, 1970, 415 pp. | MR | Zbl
[6] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, IL, M., 1962, 895 pp.
[7] Aleksandryan R. A., Mirzakharyan E. A., Obschaya topologiya, “Vysshaya shkola”, M., 1979, 336 pp. | Zbl