Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 80-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a triangle $T$, we obtain upper estimates for the error of approximation of derivatives of a function $f\in W^4M$ by derivatives of a piecewise polynomial function $P_3$ that defines a composite Hsieh–Clough–Tocher element. In the obtained error estimates, the negative influence of the smallest angle $\alpha$ of the triangle $T$ on the error of approximation of derivatives is decreased as compared to most often used classical estimates for noncomposite elements. Contrary to expectations, the behavior of the obtained upper estimates with respect to the angle $\alpha$ turned out to be similar to the estimates for the fifth-order polynomial $\widetilde P_5$ defining a “purely polynomial” (noncomposite) finite element that were found by Yu. N. Subbotin. However, the Hsieh–Clough–Tocher element may have an advantage over the polynomial $\widetilde P_5$, which provides the same smoothness, because the implementation of the finite element method for finding $P_3$ requires 12 free parameters, whereas the implementation of this method for finding $\widetilde P_5$ requires 21 parameters.
Mots-clés : multidimensional interpolation
Keywords: finite element method, approximation.
@article{TIMM_2012_18_4_a6,
     author = {N. V. Baidakova},
     title = {Upper estimates for the error of approximation of derivatives in a~finite element of {Hsieh{\textendash}Clough{\textendash}Tocher} type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {80--89},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a6/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 80
EP  - 89
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a6/
LA  - ru
ID  - TIMM_2012_18_4_a6
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 80-89
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a6/
%G ru
%F TIMM_2012_18_4_a6
N. V. Baidakova. Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 80-89. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a6/

[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[2] Ženišek A., “Interpolation polynomials on the triangle”, Numer. Math., 15 (1970), 283–296 | DOI | MR | Zbl

[3] Bramble J. H., Zlamal M., “Triangular elements in the finite element method”, Math. Comp., 24:112 (1970), 809–820 | DOI | MR

[4] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[5] Subbotin Yu. N., “Mnogomernaya kusochno polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, eds. A. Yu. Kuznetsov, VTsN, Novosibirsk, 1981, 148–153 | MR

[6] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN SSSR, 189, 1989, 117–137 | MR | Zbl

[7] Subbotin Yu. N., “Pogreshnost approksimatsii interpolyatsionnymi mnogochlenami malykh stepenei na $n$-simpleksakh”, Mat. zametki, 48:4 (1990), 88–99 | MR | Zbl

[8] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, 1992, 110–119 | MR | Zbl

[9] Latypova N. V., “Error estimates for approximation by polynomials of degree $4k+3$ on the triangle”, Proc. Steklov Inst. Math., 2002, S190–S213 | MR | Zbl

[10] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Russ. J. of numerical analysis and mathematical modelling, 14:2 (1999), 87–107 | MR | Zbl

[11] Subbotin Yu. N., “A new cubic element in the FEM”, Proc. Steklov Inst. Math., 2005, S176–S187 | MR | Zbl

[12] Baidakova N. V., “A Method of Hermite interpolation by polynomials of the third degree on a triangle”, Proc. Steklov Inst. Math., 2005, S49–S55 | MR | Zbl

[13] Ženišek A., “Maximum-angle condition and triangular finite elements of Hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR | Zbl

[14] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udmurt. un-ta. Matematika, 2003, 3–10

[15] Kupriyanova Yu. V., “Ob odnoi teoreme iz teorii splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 48:2 (2008), 206–211 | MR | Zbl

[16] Matveeva Yu. V., “Ob ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike s ispolzovaniem smeshannykh proizvodnykh”, Izv. Sarat. un-ta. Matematika. Mekhanika. Informatika, 7:1 (2007), 23–27

[17] Baidakova N. V., “Vliyanie gladkosti na pogreshnost approksimatsii proizvodnykh pri lokalnoi interpolyatsii na triangulyatsiyakh”, Tr. In-ta matematiki i mekhaniki, 17, no. 3, 2011, 83–97