Trigonometric analogs of the Szeg\H o equiconvergence theorem for Fourier--Jacobi series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 68-79

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\Phi^{\alpha,\beta}_k(\tau)\}_{k=0}^\infty$ be an orthonormal system of trigonometric Jacobi polynomials obtained by orthogonalizing the sequence $1,\sin\tau,\cos\tau,\sin2\tau,\cos2\tau,\dots$ by Schmidt method on $[0,2\pi]$ with a weight $\varphi^{\alpha,\beta}(\tau):=(1-\cos\tau)^{\alpha+1/2}(1+\cos\tau)^{\beta+1/2}$; $s_n^{\alpha,\beta}(F;\theta):=\sum_{k=0}^nc_k(\varphi^{\alpha,\beta};F)\Phi^{\alpha,\beta}_k(\theta)$ is $n$-th Fourier sum of function $F$ in system $\Phi^{\alpha,\beta}_k(\tau)\}_{k=0}^\infty$; $s_n(F;\theta)=s_{2n}^{-1/2,-1/2}(F;\theta)$ is usual Fourier sum. It is proved that if $\alpha,\beta>-1$, $A:=\min\{\alpha+1/2,\alpha/2+1/4\}$, $B:=\min\{\beta+1/2,\beta/2+1/4\}$, $\varepsilon\in(0,\pi/2)$, $F$ is measurable, $F(\tau)(1-\cos\tau)^A(1+\cos\tau)^B\in L^1$ and $\varepsilon\in(0,\pi/2)$ $F\varphi^{\alpha,\beta}\in L^1$ and the sum $s_{2n}^{\alpha,\beta}(F;\theta)$ equiconverges with each of sequences $s_n(F\sqrt{\varphi^{\alpha,\beta}};\theta)/\sqrt{\varphi^{\alpha,\beta}(\theta)}$ and $s_n(F\varphi^{\alpha,\beta};\theta)/\varphi^{\alpha,\beta}(\theta)$ uniformly on intervals $[-\pi+\varepsilon,-\varepsilon]$ and $[\varepsilon,\pi-\varepsilon]$. For even function $F$ similar results were obtained by G. Szegő and Ye.  A. Pleshchyova.
Keywords: trigonometric Jacobi polynomials, Fourier sums
Mots-clés : equiconvergens.
@article{TIMM_2012_18_4_a5,
     author = {V. M. Badkov},
     title = {Trigonometric analogs of the {Szeg\H} o equiconvergence theorem for {Fourier--Jacobi} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {68--79},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a5/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - Trigonometric analogs of the Szeg\H o equiconvergence theorem for Fourier--Jacobi series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 68
EP  - 79
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a5/
LA  - ru
ID  - TIMM_2012_18_4_a5
ER  - 
%0 Journal Article
%A V. M. Badkov
%T Trigonometric analogs of the Szeg\H o equiconvergence theorem for Fourier--Jacobi series
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 68-79
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a5/
%G ru
%F TIMM_2012_18_4_a5
V. M. Badkov. Trigonometric analogs of the Szeg\H o equiconvergence theorem for Fourier--Jacobi series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 68-79. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a5/