Jackson's exact inequality with a special module of continuity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 51-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Best integral approximations of $B$-splines by trigonometric polynomials are found. An exact inequality of Jackson type with a special module of continuity is found.
Keywords: integral approximations of individual functions by trigonometric polynomials, direct theorems of approximation theory.
@article{TIMM_2012_18_4_a4,
     author = {A. G. Babenko and N. V. Dolmatova and Yu. V. Kryakin},
     title = {Jackson's exact inequality with a~special module of continuity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {51--67},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a4/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - N. V. Dolmatova
AU  - Yu. V. Kryakin
TI  - Jackson's exact inequality with a special module of continuity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 51
EP  - 67
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a4/
LA  - ru
ID  - TIMM_2012_18_4_a4
ER  - 
%0 Journal Article
%A A. G. Babenko
%A N. V. Dolmatova
%A Yu. V. Kryakin
%T Jackson's exact inequality with a special module of continuity
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 51-67
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a4/
%G ru
%F TIMM_2012_18_4_a4
A. G. Babenko; N. V. Dolmatova; Yu. V. Kryakin. Jackson's exact inequality with a special module of continuity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 51-67. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a4/

[1] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, 2008, 19–37

[2] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala i neravenstvo Dzheksona v $C(\mathbb T)$”, Tr. In-ta matematiki i mekhaniki, 15, no. 1, 2009, 59–65

[3] Bernshtein S. N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Soobsch. Khark. mat. o-va. Ser. 2, 13, 1912, 49–194

[4] Gorbachev D. V., “Neravenstvo Dzheksona s konstantoi 1 v prostranstve nepreryvnykh funktsii”, Izv. TulGU. Matematika. Mekhanika. Informatika, 7:1 (2001), 77–81 | MR

[5] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp. | MR | Zbl

[6] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, LGU, L., 1982, 366 pp. | MR

[7] Korneichuk N. P., “Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | Zbl

[8] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[9] Natanson I. P., Konstruktivnaya teoriya funktsii, Gos. izd-vo tekhn.-teoret. lit., M.–L., 1949, 688 pp. | MR

[10] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:3 (1946), 207–256 | MR | Zbl

[11] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 336 pp. | Zbl

[12] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Izbr. tr., 2-e izd., Nauka, M., 1983, 432 pp. | MR | Zbl

[13] Shvarts L., Matematicheskie metody dlya fizicheskikh nauk, per. s fr., Mir, M., 1965, 412 pp. | MR

[14] Babenko A. G., Kryakin Yu. V., On $T_{2n-1}^\perp$ spaces, 15 Dec. 2008, arXiv: 0812.2744v1[math.CA]

[15] Bellinsky E. S., Trigub R. M., Fourier analysis and approximation of functions, Kluwer Academic Publishers, Dordrecht, 2004, 585 pp. | MR | Zbl

[16] Bernstein S. N., “Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné”, Mem. Cl. Sci. Acad. Roy. Belg., 4 (1912), 1–103

[17] Bernstein S. N., “Sur les recherches récentes relatives à la meilleure des fonctions continues par les polynômes”, Proc. of 5th Inter. Math. Congress, v. 1, 1912, 256–266

[18] Boman J., Shapiro H., “Comparison theorems for a generalized modulus of continuity”, Arkiv för Matematik, 9 (1971), 91–116 | DOI | MR | Zbl

[19] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin etc., 1993, 449 pp. | MR | Zbl

[20] Elkies N., “On the sums $\sum^\infty_{k=-\infty}(4k+1)^{-n}$”, Amer. Math. Monthly, 110:7 (2003), 561–573 | DOI | MR | Zbl

[21] Favard J., “Sur l'pproximation des fonctions périodiques par des polynomes trigonométriques”, Comptes Rendus Acad. Sci. Paris, 203 (1936), 1122–1124 | Zbl

[22] Favard J., “Application de la formule summatoire d'Euler à la démostration de quelques propriétés extrémales des intégrales des fonctions périodiques et presque-périodiques”, Matematisk Tidskrift Københaven B, 4 (1936), 81–94

[23] Favard J., “Sur les meilleurs procedes d'approximation de certaies clasess de fonctions par des polynomes trigonometriques”, Bul. Sci. Math., 61 (1937), 209–224, 243–256 | Zbl

[24] Fejér L., “Sur les fonctions bornées et intégrables”, Comptes Rendus Hebdomadaries, Seances de l'Academie de Sciences, Paris, 131 (1900), 984–987

[25] Foucart S., Kryakin Yu., Shadrin A., “On the exact constant in Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29 (2009), 157–179 | DOI | MR | Zbl

[26] Jackson D., Über die Genauigkeit der Annäherunger stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Dissertation, Universitat Göttingen, 1911 | Zbl

[27] Landau E., “Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion”, Rend. Circ. Mat. Palermo, 25 (1908), 337–345 | DOI

[28] Lebesgue H., “Sur l'approximation des fonctions”, Bull. Sciences Math., 22 (1898), 278–287 | Zbl

[29] Neumann C., Untersuchungen über das Logarithmische und Newton'sche potential, Teubner, Leipzig, 1877 | Zbl

[30] Peetre J., “Exact interpolation theorems for Lipschitz continuous functions”, Ricerche Mat., 18 (1969), 239–259 | MR | Zbl

[31] Stone M. H., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41 (1937), 375–481 | DOI | MR | Zbl

[32] de la Vallée Poussin Ch. J., “Sur l'approximation des fonctions d'une variable réelle et leurs dérivées par des polynômes et des suites limitées de Fourier”, Bulletin de l'Academie Royale de Belgique, 3 (1908), 193–254

[33] de la Vallée Poussin Ch. J., “On the approximation of functions of a real variable and on quasi-analytic functions”, The Rice Institute Pamphlet, 3 (1925), 105–123

[34] Weierstrass K., “Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reellen Veränderlichen”, Der Sitzungsberichte der Königl. Akademie der Wissennschaften, 1885, 633–639, 789–805