On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 35-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an upper bound for the error of the best approximation of the (first-order) differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$. This upper bound is close to a known lower bound and improves the previous upper bounds. To prove the upper estimate, we consider a specific family of operators; in this family, we choose an operator that provides the least bound for the error of the best approximation.
Keywords: Stechkin's problem, differential operator, half-line.
@article{TIMM_2012_18_4_a3,
     author = {V. V. Arestov and M. A. Filatova},
     title = {On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--50},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - M. A. Filatova
TI  - On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 35
EP  - 50
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/
LA  - ru
ID  - TIMM_2012_18_4_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%A M. A. Filatova
%T On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 35-50
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/
%G ru
%F TIMM_2012_18_4_a3
V. V. Arestov; M. A. Filatova. On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 35-50. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/

[1] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[3] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl

[4] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 591 pp.

[5] Hardy G. H., Littlewood J. E., “Contribution to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11 (1912), 411–478 | DOI | MR | Zbl

[6] Landau E., “Einige Ungleichungen für zweimal differentierbare Funktionen”, Proc. London Math. Soc. (2), 13 (1913), 43–49 | DOI | Zbl

[7] Hadamard J., “Sur le module maximum d'une fonction et de ses dérivées”, S. R. des Séances Soc. Math. France, 41 (1914), 68–72

[8] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbr. tr. Matematika, mekhanika, Nauka, M., 1985, 252–263

[9] Sz.-Nagy B., “Über Integralungleichungen zwischen einer Function und ihrer Ableitung”, Acta Sci. Math., 10 (1941), 64–74 | MR

[10] Gabushin V. N., “Neravenstva dlya norm funktsii i ee proizvodnykh v metrikakh $L_p$”, Mat. zametki, 1:3 (1967), 291–298 | MR | Zbl

[11] Gabushin V. N., “O nailuchshem priblizhenii operatora differentsirovaniya v metrike $L_p$”, Mat. zametki, 12:5 (1972), 531–538 | MR | Zbl

[12] Arestov V. V., “Priblizhenie operatorov, invariantnykh otnositelno sdviga”, Tr. MIAN SSSR, 138, 1975, 43–70 | MR | Zbl

[13] Arestov V. V., “Nailuchshee priblizhenie neogranichennykh operatorov, invariantnykh otnositelno sdviga, lineinymi ogranichennymi operatorami”, Tr. MIAN SSSR, 198, 1992, 3–20 | MR | Zbl

[14] Subbotin Yu. N., Taikov L. V., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Mat. zametki, 3:2 (1968), 157–164 | MR | Zbl

[15] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[16] Kato T., “On an Inequality of Hardy, Littlewood, and Pólya”, Advances in Math., 7:3 (1971), 217–218 | DOI | MR | Zbl

[17] Everitt W. D., Zettl A., “On a class of integral inequalities”, J. London Math. Soc., 17 (1978), 291–303 | DOI | MR | Zbl

[18] Kwong M. K., Zettl A., Norm inequalities for derivatives and differences, Lecture Notes in Math., 1536, Springer-Verlag, Berlin, 1992, 150 pp. | MR | Zbl

[19] Kuptsov N. P., “Kolmogorovskie otsenki dlya proizvodnykh v $L_2[0,\infty)$”, Tr. MIAN SSSR, 138, 1975, 94–117 | MR | Zbl

[20] Buslaev A. P., “Ob odnoi ekstremalnoi zadache, svyazannoi s neravenstvami dlya proizvodnykh”, Vestn. Mosk. un-ta. Matematika, mekhanika, 1978, no. 3, 67–77 | MR | Zbl

[21] Rublev A. L., “O priblizhenii operatora differentsirovaniya na klasse dvazhdy differentsiruemykh funktsii v prostranstve $L_2(0,\infty)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4, 1996, 162–170 | MR | Zbl

[22] Berdysheva E. E., “On the best approximation of the differentiation operator in $L_2(0,\infty)$”, East J. Approx., 2:3 (1996), 281–287 | MR | Zbl

[23] Arestov V. V., Filatova M. A., “Srednekvadraticheskoe priblizhenie operatora differentsirovaniya na poluosi”, Materialy mezhdunar. nauch. konf. “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2012, 10–13

[24] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | Zbl

[25] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, GIFML, M., 1961, 312 pp.

[26] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl

[27] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR

[28] Kuklin N. A., “Metod Delsarta v zadache o kontaktnykh chislakh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 224–239

[29] Van der Varden B. L., Algebra, Nauka, M., 1976, 648 pp. | MR