@article{TIMM_2012_18_4_a3,
author = {V. V. Arestov and M. A. Filatova},
title = {On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {35--50},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/}
}
TY - JOUR AU - V. V. Arestov AU - M. A. Filatova TI - On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$ JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 35 EP - 50 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/ LA - ru ID - TIMM_2012_18_4_a3 ER -
%0 Journal Article %A V. V. Arestov %A M. A. Filatova %T On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$ %J Trudy Instituta matematiki i mehaniki %D 2012 %P 35-50 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/ %G ru %F TIMM_2012_18_4_a3
V. V. Arestov; M. A. Filatova. On the approximation of the differentiation operator by linear bounded operators on the class of twice differentiable functions in the space $L_2(0,\infty)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 35-50. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a3/
[1] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl
[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl
[3] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl
[4] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 591 pp.
[5] Hardy G. H., Littlewood J. E., “Contribution to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11 (1912), 411–478 | DOI | MR | Zbl
[6] Landau E., “Einige Ungleichungen für zweimal differentierbare Funktionen”, Proc. London Math. Soc. (2), 13 (1913), 43–49 | DOI | Zbl
[7] Hadamard J., “Sur le module maximum d'une fonction et de ses dérivées”, S. R. des Séances Soc. Math. France, 41 (1914), 68–72
[8] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbr. tr. Matematika, mekhanika, Nauka, M., 1985, 252–263
[9] Sz.-Nagy B., “Über Integralungleichungen zwischen einer Function und ihrer Ableitung”, Acta Sci. Math., 10 (1941), 64–74 | MR
[10] Gabushin V. N., “Neravenstva dlya norm funktsii i ee proizvodnykh v metrikakh $L_p$”, Mat. zametki, 1:3 (1967), 291–298 | MR | Zbl
[11] Gabushin V. N., “O nailuchshem priblizhenii operatora differentsirovaniya v metrike $L_p$”, Mat. zametki, 12:5 (1972), 531–538 | MR | Zbl
[12] Arestov V. V., “Priblizhenie operatorov, invariantnykh otnositelno sdviga”, Tr. MIAN SSSR, 138, 1975, 43–70 | MR | Zbl
[13] Arestov V. V., “Nailuchshee priblizhenie neogranichennykh operatorov, invariantnykh otnositelno sdviga, lineinymi ogranichennymi operatorami”, Tr. MIAN SSSR, 198, 1992, 3–20 | MR | Zbl
[14] Subbotin Yu. N., Taikov L. V., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Mat. zametki, 3:2 (1968), 157–164 | MR | Zbl
[15] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[16] Kato T., “On an Inequality of Hardy, Littlewood, and Pólya”, Advances in Math., 7:3 (1971), 217–218 | DOI | MR | Zbl
[17] Everitt W. D., Zettl A., “On a class of integral inequalities”, J. London Math. Soc., 17 (1978), 291–303 | DOI | MR | Zbl
[18] Kwong M. K., Zettl A., Norm inequalities for derivatives and differences, Lecture Notes in Math., 1536, Springer-Verlag, Berlin, 1992, 150 pp. | MR | Zbl
[19] Kuptsov N. P., “Kolmogorovskie otsenki dlya proizvodnykh v $L_2[0,\infty)$”, Tr. MIAN SSSR, 138, 1975, 94–117 | MR | Zbl
[20] Buslaev A. P., “Ob odnoi ekstremalnoi zadache, svyazannoi s neravenstvami dlya proizvodnykh”, Vestn. Mosk. un-ta. Matematika, mekhanika, 1978, no. 3, 67–77 | MR | Zbl
[21] Rublev A. L., “O priblizhenii operatora differentsirovaniya na klasse dvazhdy differentsiruemykh funktsii v prostranstve $L_2(0,\infty)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4, 1996, 162–170 | MR | Zbl
[22] Berdysheva E. E., “On the best approximation of the differentiation operator in $L_2(0,\infty)$”, East J. Approx., 2:3 (1996), 281–287 | MR | Zbl
[23] Arestov V. V., Filatova M. A., “Srednekvadraticheskoe priblizhenie operatora differentsirovaniya na poluosi”, Materialy mezhdunar. nauch. konf. “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2012, 10–13
[24] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | Zbl
[25] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, GIFML, M., 1961, 312 pp.
[26] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl
[27] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR
[28] Kuklin N. A., “Metod Delsarta v zadache o kontaktnykh chislakh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 224–239
[29] Van der Varden B. L., Algebra, Nauka, M., 1976, 648 pp. | MR