On the exact values of mean $\nu$-widths of some classes of entire functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 315-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find the exact values of various $\nu$-widths for some classes of functions $f\in L_2^{(r)}(\mathbb R)$ differentiable on the axis $\mathbb R=(-\infty;+\infty)$ and satisfying the condition $$ \Bigg(\int_0^h\Omega_m^q(f^{(r)},t)\,dt\Bigg)^{1/q}\leq\Phi(h), $$ where $r,m\in\mathbb N$, $1/r$, $0$, $\Omega_m(f^{(r)},t)_2$ is the generalized modulus of continuity of $m$th order of the derivative $f^{(r)}\in L_2(\mathbb R)$, and $\Phi(t)$ is an arbitrary continuous function increasing on $t\ge0$ and such that $\Phi(0)=0$.
Keywords: spaces of measurable function, entire functions of exponential type $\sigma$, modulus of continuity of $m$th order
Mots-clés : exact constant.
@article{TIMM_2012_18_4_a27,
     author = {M. Sh. Shabozov and G. A. Yusupov},
     title = {On the exact values of mean $\nu$-widths of some classes of entire functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {315--327},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - G. A. Yusupov
TI  - On the exact values of mean $\nu$-widths of some classes of entire functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 315
EP  - 327
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/
LA  - ru
ID  - TIMM_2012_18_4_a27
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A G. A. Yusupov
%T On the exact values of mean $\nu$-widths of some classes of entire functions
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 315-327
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/
%G ru
%F TIMM_2012_18_4_a27
M. Sh. Shabozov; G. A. Yusupov. On the exact values of mean $\nu$-widths of some classes of entire functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 315-327. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp. | MR | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR

[3] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[4] Ibragimov I. I., Teoriya priblizheniya tselymi funktsiyami, Elm, Baku, 1979, 468 pp. | MR

[5] Ibragimov I. I., Nasibov F. G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[6] Popov V. Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matematika, 1972, no. 6, 65–73 | MR | Zbl

[7] Nasibov F. G., “O priblizhenii v $L_2$ tselymi funktsiyami”, Dokl. AN Azerbaidzhanskoi SSR, 42:4 (1986), 3–6 | MR | Zbl

[8] Magaril-Ilyaev G. G., “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sb., 182:11 (1991), 1635–1656 | MR | Zbl

[9] Magaril-Ilyaev G. G., “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, Dokl. SSSR, 318:1 (1991), 35–38 | MR

[10] Magaril-Ilyaev G. G., Tikhomirov V. M., “O priblizhenii klassov funktsii na pryamoi splainami i tselymi funktsiyami”, Differentsialnye uravneniya i funktsionalnyi analiz, Cb. tr., Izd-vo Un-ta Druzhby narodov, M., 1991, 116–129

[11] de Boor C., Schoenberg I. J., “Cardinal interpolation and spline functions VIII”, Lect. Notes Math., 501, 1976, 1–79 | DOI | MR | Zbl

[12] Vakarchuk S. B., “O nailuchshem polinomialnom priblizhenii tselykh transtsendentnykh funktsii v nekotorykh banakhovykh prostranstvakh. I”, Ukr. mat. zhurnal, 47:9 (1994), 1123–1133 | MR

[13] Vakarchuk S. B., “Exact constant in an inequality of Jackson type for $L_2$ approximation on the line and exact values of mean widths of functional classes”, East J. Approx., 10:1–2 (2004), 27–39 | MR | Zbl

[14] Vakarchuk S. B., Zabutna V. I., “Widths of function classes from $L_2$ and exact constants in Jackson type inequalities”, East J. Approx., 14:4 (2008), 411–421 | MR | Zbl

[15] Shabozov M. Sh., Mamadov R., “Nailuchshee priblizhenie tselymi funktsiyami eksponentsialnogo tipa v $L_2(\mathbb R)$”, Vestn. Khorog. gos. un-ta Cer. 1, 2001, no. 4, 76–81

[16] Shabozov M. Sh., Vakarchuk S. B., Mamadov R., “O tochnykh znacheniyakh srednikh $n$-poperechnikov nekotorykh klassov funktsii”, Dokl. AN Resp. Tadzhikistan, 52:4 (2009), 247–254

[17] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Mosk. gos. un-ta, M., 1976, 325 pp. | MR

[18] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[19] Pinkus A., $n$-Widths in approximation theory, Springer-Verlag, Berlin, 1985, 252 pp. | MR | Zbl

[20] Sun Yong Sheng, “On optimal interpolation for differentiable function class. I”, Approx. Theory Appl., 2:4 (1986), 49–54 | MR | Zbl

[21] Sun Yun-shen, Li Chun, “Nailuchshee priblizhenie nekotorykh klassov gladkikh funktsii na deistvitelnoi osi splainami vysshego poryadka”, Mat. zametki, 48:4 (1990), 100–109 | MR | Zbl

[22] Tikhomirov V. M., “Ob approksimativnykh kharakteristikakh gladkikh funktsii”, Tr. konf. po differents. uravneniyam i vychisl. matematike, Nauka, Novosibirsk, 1980, 183–188 | MR

[23] Hardy G. G., Littlewood J. E., Polya G., Inequality, 2nd ed., Cambridge University Press, Cambridge, 1952, 346 pp. | MR | Zbl