On the exact values of mean $\nu$-widths of some classes of entire functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 315-327

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the exact values of various $\nu$-widths for some classes of functions $f\in L_2^{(r)}(\mathbb R)$ differentiable on the axis $\mathbb R=(-\infty;+\infty)$ and satisfying the condition $$ \Bigg(\int_0^h\Omega_m^q(f^{(r)},t)\,dt\Bigg)^{1/q}\leq\Phi(h), $$ where $r,m\in\mathbb N$, $1/r$, $0$, $\Omega_m(f^{(r)},t)_2$ is the generalized modulus of continuity of $m$th order of the derivative $f^{(r)}\in L_2(\mathbb R)$, and $\Phi(t)$ is an arbitrary continuous function increasing on $t\ge0$ and such that $\Phi(0)=0$.
Keywords: spaces of measurable function, entire functions of exponential type $\sigma$, modulus of continuity of $m$th order
Mots-clés : exact constant.
@article{TIMM_2012_18_4_a27,
     author = {M. Sh. Shabozov and G. A. Yusupov},
     title = {On the exact values of mean $\nu$-widths of some classes of entire functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - G. A. Yusupov
TI  - On the exact values of mean $\nu$-widths of some classes of entire functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 315
EP  - 327
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/
LA  - ru
ID  - TIMM_2012_18_4_a27
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A G. A. Yusupov
%T On the exact values of mean $\nu$-widths of some classes of entire functions
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 315-327
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/
%G ru
%F TIMM_2012_18_4_a27
M. Sh. Shabozov; G. A. Yusupov. On the exact values of mean $\nu$-widths of some classes of entire functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 315-327. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a27/