Generalized solutions of singular integro-differential equations in Banach spaces and their applications
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 286-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate special classes of linear integro-differential equations with a Noether operator at the highest derivative and convolution integral terms of Volterra type. We obtain sufficient conditions for the solvability of the Cauchy problem for such equations both in generalized functions and in classes of functions of finite smoothness and investigate the connection between these types of solutions. The investigation uses the fundamental operator function techniques. Abstract results are illustrated by examples of initial-boundary value problems that appear in the mathematical theory of viscoelasticity.
Keywords: Banach space, Noether operator, complete Jordan set, fundamental operator function.
Mots-clés : distribution
@article{TIMM_2012_18_4_a25,
     author = {M. V. Falaleev and S. S. Orlov},
     title = {Generalized solutions of singular integro-differential equations in {Banach} spaces and their applications},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {286--297},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a25/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - S. S. Orlov
TI  - Generalized solutions of singular integro-differential equations in Banach spaces and their applications
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 286
EP  - 297
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a25/
LA  - ru
ID  - TIMM_2012_18_4_a25
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A S. S. Orlov
%T Generalized solutions of singular integro-differential equations in Banach spaces and their applications
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 286-297
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a25/
%G ru
%F TIMM_2012_18_4_a25
M. V. Falaleev; S. S. Orlov. Generalized solutions of singular integro-differential equations in Banach spaces and their applications. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 286-297. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a25/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp.

[2] Sidorov N. [et al.], Lyapunov–Schmidt Methods in nonlinear analysis and applications, Kluwer Acad. Publ., Dordrecht, 2002, 548 pp.

[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Tokyo–Keln, 2003, 216 pp.

[4] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1995, 384 pp.

[5] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York–Basel–Hong Kong, 1999, 313 pp.

[6] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000, 336 pp.

[7] Pyatkov S. G., Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Tokyo–Keln, 2002, 216 pp.

[8] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 338 pp.

[9] Fattorini H. O., Second order linear differential equations in Banach spaces, Elsevier Science Ltd., Amsterdam, 1985, 328 pp.

[10] Kozhanov A. I., Kraevye zadachi dlya uravnenii matematicheskoi fiziki nechetnogo poryadka, Izd-vo Novosib. gos. un-ta, Novosibirsk, 1990, 130 pp.

[11] Kozhanov A. I., Composite type equations and inverse problems, VSP, Utrecht–Boston–Tokyo–Keln, 1999, 171 pp.

[12] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy uravnenii, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998, 438 pp.

[13] Daletskii Yu. M., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 535 pp.

[14] Krein S. G., Khasan M. I., “Differentsialnye uravneniya v banakhovom prostranstve”, Itogi nauki i tekhniki. Matematicheskii analiz, 21, AN SSSR VINITI, 1983, 130–264 | MR | Zbl

[15] Krein S. G., Lineinye uravneniya v banakhovykh prostranstvakh, Fizmatlit, M., 1971, 104 pp.

[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967, 275 pp.

[17] Sveshnikov A. G. [i dr.], Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp.

[18] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi mir, M., 2008, 400 pp.

[19] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp.

[20] Falaleev M. V., Orlov S. S., “Vyrozhdennye integro-differentsialnye operatory i banakhovykh prostranstvakh i ikh prilozheniya”, Izv. vuzov. Matematika, 2011, no. 10, 68–79 | MR

[21] Falaleev M. V., Orlov S. S., “Integro-differentsialnye uravneniya s vyrozhdeniem v banakhovykh prostranstvakh i ikh prilozheniya v matematicheskoi teorii uprugosti”, Izv. Irkut. gos. un-ta. Matematika, 4:1 (2011), 118–134

[22] Falaleev M. V., Orlov S. S., “Nachalno-kraevye zadachi dlya integro-differentsialnykh uravnenii vyazkouprugosti”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:4 (2010), 597–600

[23] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.

[24] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991, 256 pp.

[25] Trenogin V. A., Funktsionalnyi analiz, uch., 3-e izd., ispr., Fizmatlit, M., 2002, 488 pp.

[26] Nashed M. Z., Generalized inverses and applications, Academic Press, New York–San Francisco–London, 1976, 1055 pp.

[27] Sidorov N. A., Blagodatskaya E. B., Differentsialnye uravneniya s fredgolmovym operatorom pri starshem differentsialnom vyrazhenii, preprint, IrVTs SO AN SSSR, Irkutsk, 1991, 36 pp.

[28] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. mat. zhurn., 46:6 (2005), 1393–1406 | MR | Zbl

[29] Sidorov N. A., Romanova O. A., “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differents. uravneniya, 19:9 (1983), 1516–1526

[30] Rusak Yu. B., “Nekotorye sootnosheniya mezhdu zhordanovymi naborami operator-funktsii i sopryazhennoi k nei”, Izv. AN UzSSR. Ser. fiz.-mat., 1972, no. 2, 15–19

[31] Falaleev M .V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[32] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Math. Meth. Appl. Sci., 24:14 (2001), 1043–1053 | DOI

[33] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizhenii zhidkostei Kelvina–Foigta i Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR | Zbl