On the question of the weak invariance of sets with respect to a differential inclusion generated by a control system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 271-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A differential inclusion generated by a control system is considered on a finite time interval. Questions concerning the property of weak invariance of sets with respect to the differential inclusion are investigated. For sets in the space of positions of the control system that are not weakly invariant with respect to the differential inclusion, a numerical characteristic is introduced, which estimates the degree of the (weak) noninvariance of a set, i.e., the weak invariance defect of this set with respect to the differential inclusion.
Keywords: control system, differential inclusion, control, weak invariance of a set, weak invariance defect.
@article{TIMM_2012_18_4_a24,
     author = {V. N. Ushakov and A. A. Zimovets},
     title = {On the question of the weak invariance of sets with respect to a~differential inclusion generated by a~control system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--285},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a24/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Zimovets
TI  - On the question of the weak invariance of sets with respect to a differential inclusion generated by a control system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 271
EP  - 285
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a24/
LA  - ru
ID  - TIMM_2012_18_4_a24
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Zimovets
%T On the question of the weak invariance of sets with respect to a differential inclusion generated by a control system
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 271-285
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a24/
%G ru
%F TIMM_2012_18_4_a24
V. N. Ushakov; A. A. Zimovets. On the question of the weak invariance of sets with respect to a differential inclusion generated by a control system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 271-285. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a24/

[1] Krasovskii N. N., “O differentsialnoi igre na sblizhenie”, Dokl. AN SSSR, 182:6 (1968), 1287–1289 | MR

[2] Krasovskii N. N., Subbotin A. I., “Differentsialnaya igra navedeniya”, Differents. uravneniya, 6:4 (1970), 579–591 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. I”, Dokl. AN SSSR, 174:6 (1967), 1278–1281

[5] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. II”, Dokl. AN SSSR, 175:4 (1967), 764–766 | Zbl

[6] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[7] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes – a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: a report from Russia, Progress in Systems and Control Theory, 17, ed. A. B. Kurzhanski, Birkhauser, Boston etc., 1993, 122–188 | MR

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[9] Krasovskii N. N., Subbotin A. I., “Approksimatsiya v differentsialnoi igre”, Prikl. matematika i mekhanika, 37:2 (1973), 197–204 | MR

[10] Guseinov H. G., Subbotin A. I., Ushakov V. N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control Inform. Theory, 14:6 (1985), 405–419 | MR

[11] Ushakov V. N., Latushkin Ya. A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 178–194 | MR | Zbl

[12] Ushakov V. N., Brykalov S. A., Latushkin Y. A., “Stable and unstable sets in problems of conflict control”, Funct. Differ. Equ., 15:3–4 (2008), 309–338 | MR | Zbl

[13] Ushakov V. N., Malëv A. G., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 199–222

[14] Guseinov Kh. G., Ushakov V. N., “Silno i slabo invariantnye mnozhestva otnositelno differentsialnogo vklyucheniya”, Dokl. AN SSSR, 303:4 (1988), 794–796 | MR

[15] Tonkov E. L., Panasenko E. A., “Funktsii Lyapunova i polozhitelno invariantnye mnozhestva differentsialnykh vklyuchenii”, Differents. uravneniya, 43:6 (2007), 859–860

[16] Tonkov E. L., Panasenko E. A., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[17] Quincampoix M., Buckdahn R., Rainer C., Teichman J., “Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems”, Bull. Sci. Math., 134:2 (2010), 207–214 | DOI | MR | Zbl

[18] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 169, 1985, 194–252 | MR | Zbl

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR