One-sided widths of classes of smooth functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 267-270

Voir la notice de l'article provenant de la source Math-Net.Ru

One-sided widths of the classes of functions $W_p^r[0,1]$ in the metric $L_q[0,1]$, $1\le p$, $q\le\infty$, $r>1$, are studied. Such widths are defined similarly to Kolmogorov widths with additional constraints on the approximating functions.
Keywords: one-sided widths, exact orders, classes of smooth functions.
@article{TIMM_2012_18_4_a23,
     author = {Yu. N. Subbotin},
     title = {One-sided widths of classes of smooth functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--270},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - One-sided widths of classes of smooth functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 267
EP  - 270
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/
LA  - ru
ID  - TIMM_2012_18_4_a23
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T One-sided widths of classes of smooth functions
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 267-270
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/
%G ru
%F TIMM_2012_18_4_a23
Yu. N. Subbotin. One-sided widths of classes of smooth functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 267-270. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/