One-sided widths of classes of smooth functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 267-270
Cet article a éte moissonné depuis la source Math-Net.Ru
One-sided widths of the classes of functions $W_p^r[0,1]$ in the metric $L_q[0,1]$, $1\le p$, $q\le\infty$, $r>1$, are studied. Such widths are defined similarly to Kolmogorov widths with additional constraints on the approximating functions.
Keywords:
one-sided widths, exact orders, classes of smooth functions.
@article{TIMM_2012_18_4_a23,
author = {Yu. N. Subbotin},
title = {One-sided widths of classes of smooth functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {267--270},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/}
}
Yu. N. Subbotin. One-sided widths of classes of smooth functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 267-270. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a23/
[1] Kolmogoroff A., “Über die beste Annäherung von Funktionen einer geqebenen Functionenklasse”, Ann. Math. (2), 37 (1936), 107–111 | DOI | MR
[2] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 250 pp. | MR
[3] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 41:2 (1977), 334–351 | MR | Zbl
[4] Birkhoff G., Schultz M. H., Varga R. S., “Piecewise Hermite interpolation in one and two variables with application to partial differential equations”, Numer. Math., 11 (1968), 232–256 | DOI | MR | Zbl