Best approximation of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ in the uniform metric
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 258-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain order estimates for the best approximation in the uniform metric of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ by trigonometric polynomials with the “indices” of harmonics from step hyperbolic crosses.
Keywords: best approximation, step hyperbolic cross, mixed smoothness, uniform metric.
@article{TIMM_2012_18_4_a22,
     author = {S. A. Stasyuk},
     title = {Best approximation of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ in the uniform metric},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--266},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a22/}
}
TY  - JOUR
AU  - S. A. Stasyuk
TI  - Best approximation of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ in the uniform metric
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 258
EP  - 266
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a22/
LA  - ru
ID  - TIMM_2012_18_4_a22
ER  - 
%0 Journal Article
%A S. A. Stasyuk
%T Best approximation of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ in the uniform metric
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 258-266
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a22/
%G ru
%F TIMM_2012_18_4_a22
S. A. Stasyuk. Best approximation of periodic functions of several variables from the classes $MB^\omega_{p,\theta}$ in the uniform metric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 258-266. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a22/

[1] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 2, 1952, 489–523

[2] Sun Yongsheng, Wang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 219, 1997, 356–377 | MR | Zbl

[3] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187, 1989, 143–161 | MR | Zbl

[4] Pustovoitov N. N., “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20:1 (1994), 35–48 | DOI | MR

[5] Stasyuk S. A., Fedunik O. V., “Aproksimativni kharakteristiki klasiv $B^\Omega_{p,\theta}$ periodichnikh funktsii bagatokh zminnikh”, Ukr. mat. zhurn., 58:5 (2006), 692–704 | MR | Zbl

[6] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Mat. sb., 131(173):2(10) (1986), 251–271 | MR | Zbl

[7] Pustovoitov N. N., “Priblizhenie mnogomernykh funktsii s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Mat. zametki, 65:1 (1999), 107–117 | DOI | MR | Zbl

[8] Pustovoitov N. N., “O priblizhenii i kharakterizatsii periodicheskikh funktsii mnogikh peremennykh, imeyuschikh mazhorantu smeshannykh modulei nepreryvnosti spetsialnogo vida”, Anal. Math., 29:3 (2003), 201–218 | DOI | MR | Zbl

[9] Stasyuk S. A., “Naikraschi nablizhennya, kolmogorovski ta trigonometrichni poperechniki klasiv $B_{p,\theta}^\Omega$ periodichnykh funktsii bagatokh zminnikh”, Ukr. mat. zhurn., 56:11 (2004), 1557–1568 | MR | Zbl

[10] Fedunik O. V., “Otsinki aproksimativnikh kharakteristik klasiv $B^\Omega_{p,\theta}$ periodichnikh funktsii bagatokh zminnikh v prostori $ L_q$”, Problemi teoriï nablizhennya funktsii ta sumizhni pitannya, Zb. prats In-tu matematiki NAN Ukraïni, 2, no. 2, In-t matematiki NAN Ukraïni, Kiïv, 2005, 268–294

[11] Stasyuk S. A., “Nailuchshie priblizheniya periodicheskikh funktsii mnogikh peremennykh iz klassov $B^\Omega_{p,\theta}$”, Mat. zametki, 87:1 (2010), 108–121 | DOI | MR | Zbl

[12] Stasyuk S. A., “Nailuchshee priblizhenie periodicheskikh funktsii neskolkikh peremennykh iz klassov $MB^\omega_{p,\theta}$”, Ukr. mat. zhurn., 64:1 (2012), 140–144

[13] Stasyuk S. A., “Nablizhennya klasiv $B^\omega_{p,\theta}$ periodichnikh funktsii bagatokh zminnikh polinomami zi spektrom v kubichnikh oblastyakh”, Mat. Studiï, 35:1 (2011), 66–73 | MR | Zbl

[14] Temlyakov V. N., Approximation of periodic functions, Nova Science, New York, 1993, 419 pp. | MR | Zbl

[15] Stasyuk S. A., “Nablizhennya klasiv $B_{p,\theta}^\Omega$ periodichnikh funktsii bagatokh zminnikh u rivnomirnii metritsi”, Ukr. mat. zhurn., 54:11 (2002), 1551–1559 | MR | Zbl

[16] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–112 | MR | Zbl

[17] Temlyakov V. N., “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh trigonometricheskimi polinomami i poperechniki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 49:5 (1985), 986–1030 | MR | Zbl

[18] Romanyuk A. S., “Priblizhenie klassov $B^r_{p,\theta}$ periodicheskikh funktsii mnogikh peremennykh lineinymi metodami i nailuchshie priblizheniya”, Mat. sb., 195:2 (2004), 91–116 | DOI | MR | Zbl

[19] Romanyuk A. S., “Nailuchshie priblizheniya i poperechniki klassov periodicheskikh funktsii mnogikh peremennykh”, Mat. sb., 199:2 (2008), 93–114 | DOI | MR | Zbl

[20] Mironyuk V. V., “Nablizhennya klasiv $B^\Omega_{p,\theta}$ periodichnikh funktsii bagatokh zminnikh sumami Fur'є u prostori $L_p$ pri $p=1,\infty$”, Ukr. mat. zhurn., 64:9 (2012), 1204–1213