Interpolation on a square with a minimum value of the uniform norm of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 249-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of interpolation of finite sets of numerical data by smooth functions that are defined on a plane square and vanish on its boundary. Under some constraints on the location of interpolation points inside the square, we obtain two-sided estimates with a correct dependence on the number of interpolation points for the $L_\infty$-norms of the Laplace operator of the best interpolants. For the case of interpolation at one point, which is the center of the square, we find an exact solution.
Mots-clés : interpolation
Keywords: Laplace operator, cubic $B$-splines.
@article{TIMM_2012_18_4_a21,
     author = {S. I. Novikov},
     title = {Interpolation on a~square with a~minimum value of the uniform norm of the {Laplace} operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {249--257},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a21/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Interpolation on a square with a minimum value of the uniform norm of the Laplace operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 249
EP  - 257
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a21/
LA  - ru
ID  - TIMM_2012_18_4_a21
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Interpolation on a square with a minimum value of the uniform norm of the Laplace operator
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 249-257
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a21/
%G ru
%F TIMM_2012_18_4_a21
S. I. Novikov. Interpolation on a square with a minimum value of the uniform norm of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 249-257. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a21/

[1] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:9. (1940), 281–306 | MR | Zbl

[2] Fisher S., Jerome J., Minimum norm extremals in function spaces, Lecture Notes in Math., 479, 1975, 209 pp. | DOI | MR

[3] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdica, 5:1 (1979), 83–96 | MR | Zbl

[4] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. matematicheskogo in-ta im. V. A. Steklova, 78, 1965, 24–42 | MR | Zbl

[5] Subbotin Yu. N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. matematicheskogo in-ta im. V. A. Steklova, 88, 1967, 30–60 | MR | Zbl

[6] Subbotin Yu. N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. matematicheskogo in-ta im. V. A. Steklova, 138, 1975, 118–173 | MR | Zbl

[7] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[8] Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[9] Novikov S. I., Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii dlya funktsii mnogikh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 144–159 | MR | Zbl

[10] Novikov S. I., “Zadachi ekstremalnoi funktsionalnoi interpolyatsii”, Tr. Mezhdunar. letnei mat. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 100–109

[11] Novikov S. I., “Interpolyatsiya s minimalnym znacheniem normy operatora Laplasa v share”, Zbirnik prats In-tu matem. NAN Ukraïni, 5:1 (2008), 248–262 | Zbl

[12] Novikov S. I., “Interpolyatsiya v share s minimalnym znacheniem $L_p$-normy operatora Laplasa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 258–265

[13] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Ryady i integraly. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR | Zbl

[15] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl

[16] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[17] de Boor C., “Splines as linear combinations of $B$-splines”, Approximation Theory II, Proceedings of Internat. Symposium (Austin, Texas, 1976), Academic Press, N.Y. ect., 1976, 1–47