On the growth order of sequences of double rectangular Fourier sums for functions from the classes~$\varphi(L)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 26-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates for the growth order of arbitrary sequences of rectangular partial sums of double trigonometric Fourier series for functions from the classes $\varphi(L)$, which are intermediate between $L\log^+L_{[0,2\pi)^2}$; and $L(\log^+L)^2_{[0,2\pi)^2}$.
Keywords: multiple trigonometric Fourier series, growth order estimates.
@article{TIMM_2012_18_4_a2,
     author = {N. Yu. Antonov},
     title = {On the growth order of sequences of double rectangular {Fourier} sums for functions from the classes~$\varphi(L)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On the growth order of sequences of double rectangular Fourier sums for functions from the classes~$\varphi(L)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 26
EP  - 34
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/
LA  - ru
ID  - TIMM_2012_18_4_a2
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On the growth order of sequences of double rectangular Fourier sums for functions from the classes~$\varphi(L)$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 26-34
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/
%G ru
%F TIMM_2012_18_4_a2
N. Yu. Antonov. On the growth order of sequences of double rectangular Fourier sums for functions from the classes~$\varphi(L)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 26-34. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/