On the growth order of sequences of double rectangular Fourier sums for functions from the classes $\varphi(L)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 26-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain estimates for the growth order of arbitrary sequences of rectangular partial sums of double trigonometric Fourier series for functions from the classes $\varphi(L)$, which are intermediate between $L\log^+L_{[0,2\pi)^2}$; and $L(\log^+L)^2_{[0,2\pi)^2}$.
Keywords: multiple trigonometric Fourier series, growth order estimates.
@article{TIMM_2012_18_4_a2,
     author = {N. Yu. Antonov},
     title = {On the growth order of sequences of double rectangular {Fourier} sums for functions from the classes~$\varphi(L)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--34},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On the growth order of sequences of double rectangular Fourier sums for functions from the classes $\varphi(L)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 26
EP  - 34
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/
LA  - ru
ID  - TIMM_2012_18_4_a2
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On the growth order of sequences of double rectangular Fourier sums for functions from the classes $\varphi(L)$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 26-34
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/
%G ru
%F TIMM_2012_18_4_a2
N. Yu. Antonov. On the growth order of sequences of double rectangular Fourier sums for functions from the classes $\varphi(L)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 26-34. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a2/

[1] Hardy G. H., “On the summability of Fourier series”, Proc. London Math. Soc., 12 (1913), 365–372 | DOI | Zbl

[2] Oskolkov K. I., “Podposledovatelnosti summ Fure integriruemykh funktsii”, Tr. MIAN, 167, 1985, 239–260 | MR | Zbl

[3] Karagulyan G. A., “Preobrazovanie Gilberta i eksponentsialnye integralnye otsenki pryamougolnykh chastichnykh summ dvoinykh ryadov Fure”, Mat. sb., 187:3 (1996), 55–74 | DOI | MR | Zbl

[4] Antonov N. Yu., “O skorosti rosta proizvolnykh posledovatelnostei dvoinykh pryamougolnykh summ Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 31–37

[5] Antonov N. Yu., “Conditions for the finiteness of majorants for sequences of operators and convergence of Fourier series”, Proc. Steklov Inst. Math., 2001, S1–S19 | MR | Zbl

[6] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[7] Sjölin P., “An inequality of Paley and convergence a. e. of Walsh-Fourier series”, Arkiv för Mat., 7 (1969), 551–570 | DOI | MR

[8] Hunt R. A., “On the convergence of Fourier series”, Orthogonal Expansions and their Continuous Analogues, Proc. Conf., SIU Press, Carbondale, 1968, 235–255 | MR