Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 211-223
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal P_n(\varphi^{(\alpha)})$ be the set of algebraic polynomials $p_n$ of order $n$ with real coefficients and zero weighted mean value with respect to the ultraspherical weight $\varphi^{(\alpha)}(t)=(1-t^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)}(t)p_n(t)\,dx=0$. We study the problem on the smallest possible value $\inf\{\mu(p_n)\colon p_n\in\mathcal P_n(\varphi^{(\alpha)})\}$ of the measure $\mu(p_n)=\int_{\mathcal X(p_n)}\varphi^{(\alpha)}(t)\,dt$ of the set $\mathcal X(p_n)=\{t\in[-1,1]\colon p_n(t)\ge0\}$ of points of the interval at which the polynomial $p_n\in\mathcal P_n(\varphi^{(\alpha)})$ is nonnegative. In this paper, the properties of an extremal polynomial of this problem are studied and an exact solution is presented for the case of cubic polynomials.
Keywords:
algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.
@article{TIMM_2012_18_4_a18,
author = {S. V. Kuznetsov and K. S. Tikhanovtseva},
title = {Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a~closed interval},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {211--223},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a18/}
}
TY - JOUR AU - S. V. Kuznetsov AU - K. S. Tikhanovtseva TI - Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a closed interval JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 211 EP - 223 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a18/ LA - ru ID - TIMM_2012_18_4_a18 ER -
%0 Journal Article %A S. V. Kuznetsov %A K. S. Tikhanovtseva %T Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a closed interval %J Trudy Instituta matematiki i mehaniki %D 2012 %P 211-223 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a18/ %G ru %F TIMM_2012_18_4_a18
S. V. Kuznetsov; K. S. Tikhanovtseva. Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 211-223. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a18/
[1] Arestov V. V., Raevskaya V. Yu., “Odna ekstremalnaya zadacha dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na otrezke”, Mat. zametki, 62:3 (1997), 332–342 | DOI | MR | Zbl
[2] Babenko A. G., Ekstremalnye svoistva polinomov i tochnye otsenki srednekvadratichnykh priblizhenii, Dis. kand. fiz.-mat. nauk, Sverdlovsk, 1987, 109 pp. | MR
[3] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatgiz, M., 1959, 327 pp. | MR
[4] Tikhanovtseva K. S., “O naimenshei mere mnozhestva neotritsatelnosti algebraicheskogo mnogochlena s nulevym vzveshennym srednim znacheniem na otrezke”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 300–311