Keywords: discrete optimization, stability.
@article{TIMM_2012_18_4_a16,
author = {E. E. Ivanko},
title = {A stability criterion for optimal solutions of a~minimax problem about a~partition into an arbitrary number of subsets under varying cardinality of the initial set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--194},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a16/}
}
TY - JOUR AU - E. E. Ivanko TI - A stability criterion for optimal solutions of a minimax problem about a partition into an arbitrary number of subsets under varying cardinality of the initial set JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 180 EP - 194 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a16/ LA - ru ID - TIMM_2012_18_4_a16 ER -
%0 Journal Article %A E. E. Ivanko %T A stability criterion for optimal solutions of a minimax problem about a partition into an arbitrary number of subsets under varying cardinality of the initial set %J Trudy Instituta matematiki i mehaniki %D 2012 %P 180-194 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a16/ %G ru %F TIMM_2012_18_4_a16
E. E. Ivanko. A stability criterion for optimal solutions of a minimax problem about a partition into an arbitrary number of subsets under varying cardinality of the initial set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 180-194. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a16/
[1] Kantorovich L. V., Gorstko A. B., Optimalnye resheniya v ekonomike, Nauka, M., 1972, 229 pp.
[2] Kalyaev I. A. [i dr.], Rekonfiguriruemye multi-konveiernye vychislitelnye struktury, YuNTs RAN, Rostov-na-Donu, 2008, 320 pp.
[3] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 238 pp.
[4] Chentsov P. A., “O nekotorykh algoritmakh raspredeleniya zadanii mezhdu uchastnikami”, Algoritmy i programmnye sredstva parallelnykh vychislenii, Cb. nauch. tr., 6, In-t matematiki i mekhaniki UrO RAN, 2002, 231–241 | MR | Zbl
[5] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl
[6] Burkard R. E., Dell'Amico M., Martello S., Assignment problems, Society for Industrial and Applied Mathematics, Philadelphia, 2009, 382 pp. | MR
[7] Kuhn H. W., “The Hungarian method for the assignment problem”, Naval Res. Logist. Quart., 2 (1955), 83–97 | DOI | MR | Zbl
[8] Kellerer H., Pferschy U., Pisinger D., Knapsack problems, Springer Verlag, Berlin, 2004, 546 pp. | MR | Zbl
[9] Papadimitriou C., Yannakakis M., “Optimization, approximation and complexity classes”, J. Comput. System Sci., 43:3 (1991), 425–440 | DOI | MR | Zbl
[10] Korf R. E., “A complete anytime algorithm for number partitioning”, Artificial Intelligence, 106:2 (1998), 181–203 | DOI | MR | Zbl
[11] Ivanko E. E., Chentsov A. G., Chentsov P. A., “Ob odnom podkhode k resheniyu zadachi marshrutizatsii peremeschenii s neskolkimi uchastnikami”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 4, 63–71 | MR
[12] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl
[13] Emelichev V. A., Podkopaev D. P., “O kolichestvennoi mere ustoichivosti vektornoi zadachi tselochislennogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 38:11 (1996), 1801–1805 | MR | Zbl
[14] Devyaterikova M. V., Kolokolov A. A., “Ob ustoichivosti nekotorykh algoritmov tselochislennogo programmirovaniya”, Diskretnyi analiz i issledovanie operatsii, Materialy konf., Novosibirsk, 2002, 206
[15] Cook W. [et al.], “Sensitivity theorems in integer linear programming”, Math. Programming, 34:3 (1986), 251–264 | DOI | MR | Zbl
[16] Chakravarti N., Wagelmans A. P. M., “Calculation of stability radius for combinatorial optimization problems”, Oper. Res. Letters, 23:1 (1998), 1–7 | DOI | MR | Zbl
[17] Ivanko E. E., “Dostatochnye usloviya ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii novoi vershiny i pri udalenii suschestvuyuschei”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 1, 48–57
[18] Ivanko E. E., “Ustoichivost optimalnykh marshurtov v zadache kommivoyazhera pri dobavlenii i udalenii vershin”, Materialy ros. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (DOOR-2010), Izd-vo In-ta matematiki, Novosibirsk, 2010, 105
[19] Ivanko E. E., “Kriterii ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii vershiny”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 58–66
[20] Ivanko E. E., “Kriterii ustoichivosti optimalnykh reshenii pri roste razmernosti raspredelitelnoi zadachi”, Tez. 14-i konf. “Matematicheskoe programmirovanie i prilozheniya”, Inform. byullyuten assotsiatsii mat. programmirovaniya, 12, UrO RAN, Ekaterinburg, 2011, 178