An analog of Rudin's theorem for continuous radial positive definite functions of several variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 172-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathscr G_m$ be the class of radial real-valued functions of $m$ variables with support in the unit ball $\mathbb B$ of the space $\mathbb R^m$ that are continuous on the whole space $\mathbb R^m$ and have a nonnegative Fourier transform. For $m\ge3$, it is proved that a function $f$ from the class $\mathscr G_m$ can be presented as the sum $\sum f_k\widetilde\ast f_k$ of self-convolutions of at most countably many real-valued functions $f_k$ with support in the ball of radius 1/2. This result generalizes the theorem proved by Rudin under the assumptions that the function $f$ is infinitely differentiable and the functions $f_k$ are complex-valued.
Keywords: positive definite functions, multidimensional radial functions, Rudin's theorem.
@article{TIMM_2012_18_4_a15,
     author = {A. V. Efimov},
     title = {An analog of {Rudin's} theorem for continuous radial positive definite functions of several variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {172--179},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a15/}
}
TY  - JOUR
AU  - A. V. Efimov
TI  - An analog of Rudin's theorem for continuous radial positive definite functions of several variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 172
EP  - 179
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a15/
LA  - ru
ID  - TIMM_2012_18_4_a15
ER  - 
%0 Journal Article
%A A. V. Efimov
%T An analog of Rudin's theorem for continuous radial positive definite functions of several variables
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 172-179
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a15/
%G ru
%F TIMM_2012_18_4_a15
A. V. Efimov. An analog of Rudin's theorem for continuous radial positive definite functions of several variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 172-179. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a15/

[1] Boas R. P. (Jr.), Kac M., “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206 | DOI | MR | Zbl

[2] Ehm W., Gneiting T., Richards D., “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356 (2004), 4655–4685 | DOI | MR | Zbl

[3] Rudin W., “An extension theorem for positive-definite functions”, Duke Math. J., 37 (1970), 49–53 | DOI | MR | Zbl

[4] Efimov A. V., “Variant zadachi Turana dlya polozhitelno-opredelennykh funktsii neskolkikh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 136–154

[5] Polia G., Sege G., Zadachi i teoremy iz analiza, ch. 2, Nauka, M., 1978, 431 pp.

[6] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | Zbl