Voir la notice du chapitre de livre
@article{TIMM_2012_18_4_a14,
author = {M. V. Deikalova and V. V. Rogozina},
title = {Jackson{\textendash}Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on {a~Euclidean} sphere},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {162--171},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/}
}
TY - JOUR AU - M. V. Deikalova AU - V. V. Rogozina TI - Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 162 EP - 171 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/ LA - ru ID - TIMM_2012_18_4_a14 ER -
%0 Journal Article %A M. V. Deikalova %A V. V. Rogozina %T Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere %J Trudy Instituta matematiki i mehaniki %D 2012 %P 162-171 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/ %G ru %F TIMM_2012_18_4_a14
M. V. Deikalova; V. V. Rogozina. Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 162-171. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/
[1] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR | Zbl
[2] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl
[3] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl
[4] Babenko V., Kofanov V., Pichugov S., “Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions”, Approx. Theory, A volume dedicated to Blagovest Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 24–53 | MR | Zbl
[5] Gorbachev D. V., “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2004, S117–S138 | MR
[6] Gorbachev D. V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Izd-vo “Grif i K”, Tula, 2005, 152 pp.
[7] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, 1951, 244–278 | MR | Zbl
[8] Ivanov V. I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | MR | Zbl
[9] Arestov V. V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl
[10] Deikalova M. V., “O tochnom neravenstve Dzheksona–Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 122–134
[11] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | DOI | MR | Zbl
[12] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.
[13] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl
[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004, 896 pp.
[15] Kurosh A. G., Kurs vysshei algebry, GIFML, M., 1962, 432 pp. | MR