Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 162-171
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the sharp Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials of a given (total) degree $n\ge0$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$. We prove that the polynomial $Q_n$ in one variable with the unit leading coefficient, which deviates least from zero in the space $L^\psi(-1,1)$ of functions summable on $(-1,1)$ with the Jacobi weight $\psi(t)=(1-t)^\alpha(1+t)^\beta$, $\alpha=(m-1)/2$, $\beta=(m-3)/2$, as zonal polynomial in one variable $t=x_m$, $x=(x_1,\dots,x_m)\in\mathbb S^{m-1}$, is extremal in the Jackson–Nikol'skii inequality on the sphere $\mathbb S^{m-1}$.
Keywords: multidimensional Euclidean sphere, algebraic polynomials, Jackson–Nikol'skii inequality, polynomials that deviate least from zero.
@article{TIMM_2012_18_4_a14,
     author = {M. V. Deikalova and V. V. Rogozina},
     title = {Jackson{\textendash}Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on {a~Euclidean} sphere},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {162--171},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/}
}
TY  - JOUR
AU  - M. V. Deikalova
AU  - V. V. Rogozina
TI  - Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 162
EP  - 171
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/
LA  - ru
ID  - TIMM_2012_18_4_a14
ER  - 
%0 Journal Article
%A M. V. Deikalova
%A V. V. Rogozina
%T Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 162-171
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/
%G ru
%F TIMM_2012_18_4_a14
M. V. Deikalova; V. V. Rogozina. Jackson–Nikol'skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 162-171. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a14/

[1] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR | Zbl

[2] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl

[3] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl

[4] Babenko V., Kofanov V., Pichugov S., “Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions”, Approx. Theory, A volume dedicated to Blagovest Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 24–53 | MR | Zbl

[5] Gorbachev D. V., “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2004, S117–S138 | MR

[6] Gorbachev D. V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Izd-vo “Grif i K”, Tula, 2005, 152 pp.

[7] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, 1951, 244–278 | MR | Zbl

[8] Ivanov V. I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | MR | Zbl

[9] Arestov V. V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[10] Deikalova M. V., “O tochnom neravenstve Dzheksona–Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 122–134

[11] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | DOI | MR | Zbl

[12] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.

[13] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl

[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004, 896 pp.

[15] Kurosh A. G., Kurs vysshei algebry, GIFML, M., 1962, 432 pp. | MR