An estimate of the geometric mean of the derivative of a polynomial in terms of its uniform norm on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 153-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an estimate of the geometric mean of the derivative of an algebraic polynomial of degree at most $n$ in terms of its uniform norm on a closed interval. In the general case, we obtain close two-sided estimates for the best constant; the estimates describe the order growth of the constant with respect to $n$. In the case $n=2$, the best constant is found exactly.
Keywords: Markov's inequality, algebraic polynomials, Chebyshev polynomials.
@article{TIMM_2012_18_4_a13,
     author = {M. R. Gabdullin},
     title = {An estimate of the geometric mean of the derivative of a~polynomial in terms of its uniform norm on a~closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--161},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a13/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - An estimate of the geometric mean of the derivative of a polynomial in terms of its uniform norm on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 153
EP  - 161
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a13/
LA  - ru
ID  - TIMM_2012_18_4_a13
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T An estimate of the geometric mean of the derivative of a polynomial in terms of its uniform norm on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 153-161
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a13/
%G ru
%F TIMM_2012_18_4_a13
M. R. Gabdullin. An estimate of the geometric mean of the derivative of a polynomial in terms of its uniform norm on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 153-161. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a13/

[1] Markov A. A., “Ob odnom voprose D. I. Mendeleeva”, Zap. Imp. akad. nauk, 62, Sankt-Peterburg, 1889, 1–24

[2] Bojanov B. D., “An extension of the Markov inequality”, J. Approx. Theory, 35:2 (1982), 181–190 | DOI | MR | Zbl

[3] Milovanovic G. V., Mitrinovic D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 821 pp. | MR | Zbl

[4] Glazyrina P. Yu., “Neravenstvo Markova–Nikolskogo dlya prostranstv $L_q$, $L_0$ na otrezke”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 60–71 | MR | Zbl

[5] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[6] Glazyrina P. Yu., “Neravenstvo bratev Markovykh v prostranstve $L_0$ na otrezke”, Mat. zametki, 78:1 (2005), 59–65 | DOI | MR | Zbl

[7] Glazyrina P. Yu., “Tochnoe neravenstvo Markova–Nikolskogo dlya algebraicheskikh mnogochlenov v prostranstvakh $L_q$ i $L_0$ na otrezke”, Mat. zametki, 84:1 (2008), 3–22 | DOI | MR | Zbl

[8] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 416 pp. | MR | Zbl

[9] Calderon A. P., Clain G., “On an extremum problem concerning trigonometrical polynomials”, Studia Math., 12 (1951), 166–169 | MR | Zbl

[10] Arestov V. V., Glazyrina P. Yu., “Integralnye neravenstva dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN, 442:6 (2012), 727–731 | MR

[11] Arestov V. V., Glazyrina P. Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl