Orders of approximation by local exponential splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of approximation properties of local exponential splines on a uniform grid with step $h>0$ corresponding to a linear differential operator $\mathcal L$ with constant coefficients and real pairwise different roots of the characteristic polynomial (such splines were constructed by E. V. Strelkova and V. T. Shevaldin). We find order estimates as $h\to0$ for the error of approximation of certain Sobolev classes of functions by the mentioned splines, which are exact on the kernel of the operator $\mathcal L$.
Keywords: approximation, local exponential splines, order estimates.
@article{TIMM_2012_18_4_a11,
     author = {Yu. S. Volkov and E. G. Pytkeev and V. T. Shevaldin},
     title = {Orders of approximation by local exponential splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a11/}
}
TY  - JOUR
AU  - Yu. S. Volkov
AU  - E. G. Pytkeev
AU  - V. T. Shevaldin
TI  - Orders of approximation by local exponential splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 135
EP  - 144
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a11/
LA  - ru
ID  - TIMM_2012_18_4_a11
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%A E. G. Pytkeev
%A V. T. Shevaldin
%T Orders of approximation by local exponential splines
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 135-144
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a11/
%G ru
%F TIMM_2012_18_4_a11
Yu. S. Volkov; E. G. Pytkeev; V. T. Shevaldin. Orders of approximation by local exponential splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 135-144. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a11/