On the mechanics of helical flows in an ideal incompressible viscous continuous medium
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a general solution to the problem on the motion in an incompressible continuous medium occupying at any time a whole domain $D\subset R^3$ under the conditions that $D$ is an axially symmetric cylinder and the motion is described by the Euler equation together with the continuity equation for an incompressible medium and belongs to the class of planar-helical flows (according to I. S. Gromeka's terminology), in which sreamlines coincide with vortex lines. This class is constructed by the method of transformation of the geometric structure of a vector field. The solution is characterized in Theorem 2 in the end of the paper.
Keywords: scalar fields, vector fields, tensor fields, curl
Mots-clés : Euler equation, Gromeka's problem.
@article{TIMM_2012_18_4_a10,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the mechanics of helical flows in an ideal incompressible viscous continuous medium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - On the mechanics of helical flows in an ideal incompressible viscous continuous medium
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 120
EP  - 134
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/
LA  - ru
ID  - TIMM_2012_18_4_a10
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T On the mechanics of helical flows in an ideal incompressible viscous continuous medium
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 120-134
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/
%G ru
%F TIMM_2012_18_4_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the mechanics of helical flows in an ideal incompressible viscous continuous medium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/