On the mechanics of helical flows in an ideal incompressible viscous continuous medium
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find a general solution to the problem on the motion in an incompressible continuous medium occupying at any time a whole domain $D\subset R^3$ under the conditions that $D$ is an axially symmetric cylinder and the motion is described by the Euler equation together with the continuity equation for an incompressible medium and belongs to the class of planar-helical flows (according to I. S. Gromeka's terminology), in which sreamlines coincide with vortex lines. This class is constructed by the method of transformation of the geometric structure of a vector field. The solution is characterized in Theorem 2 in the end of the paper.
Keywords: scalar fields, vector fields, tensor fields, curl
Mots-clés : Euler equation, Gromeka's problem.
@article{TIMM_2012_18_4_a10,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the mechanics of helical flows in an ideal incompressible viscous continuous medium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--134},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - On the mechanics of helical flows in an ideal incompressible viscous continuous medium
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 120
EP  - 134
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/
LA  - ru
ID  - TIMM_2012_18_4_a10
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T On the mechanics of helical flows in an ideal incompressible viscous continuous medium
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 120-134
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/
%G ru
%F TIMM_2012_18_4_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the mechanics of helical flows in an ideal incompressible viscous continuous medium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/

[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “Preobrazovanie, izmenyayuschee geometricheskoe stroenie vektornogo polya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 111–121

[2] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1977, 832 pp. | MR

[3] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1958, 678 pp. | MR

[4] Gromeka I. S., Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti, Dis. $\dots$ d-ra fiz.-mat. nauk, Otd. izd., Kazan, 1881, 107 pp.; И. С. Громека, Собрание сочинений, Изд-во АН СССР, М., 1952, 296 с. | MR

[5] Talitskikh N. A., “Nauchnye trudy I. S. Gromeki”: I. S. Gromeka, Sobranie sochinenii, Izd-vo AN SSSR, M., 1952, 7–22, 296 pp.

[6] Craig Th., “On certain possible cases of steady motion in a viscous fluid”, Amer. J. Math., 3:3 (1880), 269–288 | DOI | MR

[7] Beltrami E., “Considerazioni idrodinamiche”, Rendiconti del reale Instituto Lombardo (Milano), 22 (1889), 121–130

[8] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “Postanovka i reshenie kraevoi zadachi v klasse ploskovintovykh vektornykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 123–138