On the mechanics of helical flows in an ideal incompressible viscous continuous medium
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find a general solution to the problem on the motion in an incompressible continuous medium occupying at any time a whole domain $D\subset R^3$ under the conditions that $D$ is an axially symmetric cylinder and the motion is described by the Euler equation together with the continuity equation for an incompressible medium and belongs to the class of planar-helical flows (according to I. S. Gromeka's terminology), in which sreamlines coincide with vortex lines. This class is constructed by the method of transformation of the geometric structure of a vector field. The solution is characterized in Theorem 2 in the end of the paper.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
scalar fields, vector fields, tensor fields, curl
Mots-clés : Euler equation, Gromeka's problem.
                    
                  
                
                
                Mots-clés : Euler equation, Gromeka's problem.
@article{TIMM_2012_18_4_a10,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the mechanics of helical flows in an ideal incompressible viscous continuous medium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/}
}
                      
                      
                    TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - On the mechanics of helical flows in an ideal incompressible viscous continuous medium JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 120 EP - 134 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/ LA - ru ID - TIMM_2012_18_4_a10 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T On the mechanics of helical flows in an ideal incompressible viscous continuous medium %J Trudy Instituta matematiki i mehaniki %D 2012 %P 120-134 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/ %G ru %F TIMM_2012_18_4_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the mechanics of helical flows in an ideal incompressible viscous continuous medium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 120-134. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a10/
