A constructive method for the solution of integral equations with Hilbert kernel
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 14-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose and prove a constructive method for the solution of linear singular integral equations with Hilbert kernel. In this method, in contrast to the methods applied earlier, the singular operator is approximated by operators that preserve the main properties of this operator, which makes it possible to obtain estimates that are more exact from the point of view of convergence rate. In addition, this method requires less computations because it allows one to find approximate solutions explicitly (not only at isolated points) and the coefficients of the corresponding systems of algebraic equations are easily calculated.
Keywords: singular integral equation, constructive method, approximation of a singular integral, best mean-square approximation.
Mots-clés : Hilbert kernel
@article{TIMM_2012_18_4_a1,
     author = {R. A. Aliev and A. F. Amrakhova},
     title = {A constructive method for the solution of integral equations with {Hilbert} kernel},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--25},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a1/}
}
TY  - JOUR
AU  - R. A. Aliev
AU  - A. F. Amrakhova
TI  - A constructive method for the solution of integral equations with Hilbert kernel
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 14
EP  - 25
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a1/
LA  - ru
ID  - TIMM_2012_18_4_a1
ER  - 
%0 Journal Article
%A R. A. Aliev
%A A. F. Amrakhova
%T A constructive method for the solution of integral equations with Hilbert kernel
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 14-25
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a1/
%G ru
%F TIMM_2012_18_4_a1
R. A. Aliev; A. F. Amrakhova. A constructive method for the solution of integral equations with Hilbert kernel. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 14-25. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a1/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 513 pp. | MR | Zbl

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[3] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995, 520 pp. | MR | Zbl

[4] Parton V. Z., Perlin P. I., Integralnye uravneniya teorii uprugosti, M., 1977, 312 pp. | MR | Zbl

[5] Ivanov V. V., Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Nauk. dumka, Kiev, 1968, 287 pp. | MR

[6] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Iz-vo Kazan. un-ta, Kazan, 1980, 231 pp. | MR

[7] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh, Nauka, M., 1985, 256 pp. | MR | Zbl

[8] Afendikova N. G., Lifanov I. K., Matveev A. F., “O priblizhennom reshenii singulyarnykh integralnykh uravnenii”, Differents. uravneniya, 23:8 (1987), 1392–1402 | MR | Zbl

[9] Sheshko M. A., “Pryamoi metod resheniya singulyarnykh integralnykh uravnenii s yadrom Gilberta”, Dokl. AN BSSR, 31:12 (1987), 1077–1080 | MR | Zbl

[10] Babaev A. A., Musaev B. I., “Priblizhennoe reshenie polnogo lineinogo singulyarnogo integralnogo uravneniya s yadrom Gilberta”, Mat. zametki, 41:5 (1987), 693–709 | MR | Zbl

[11] Gabdulkhaev B. G., “Proektsionnye metody resheniya singulyarnykh integralnykh uravnenii”, Izv. vuzov. Matematika, 2004, no. 7, 12–24 | MR | Zbl

[12] Ermolaeva L. B., “Reshenie singulyarnykh integralnykh uravnenii metodom octsilliruyuschikh funktsii”, Izv. vuzov. Matematika, 2009, no. 12, 28–35 | MR | Zbl

[13] Aliev R. A., “Novyi konstruktivnyi metod resheniya singulyarnykh integralnykh uravnenii”, Mat. zametki, 79:6 (2006), 803–824 | DOI | MR | Zbl

[14] Zigmund A., Trigonometricheskie ryady, v. I, Mir, M., 1965, 615 pp. | MR

[15] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR

[16] Khatson V., Pim Dzh., Prilozhenie funktsionalnogo analiza i teorii operatorov, Mir, M., 1983, 432 pp. | MR