Best approximation for the analytic continuation operator on the class of analytic functions in a ring
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For classes of functions analytic in a ring (a disk), we study several extremal problems related to the analytic continuation operator: the best approximation of an operator, an optimal reconstruction of an operator from boundary values of a function on the circle given with an error, and the best approximation of one class of functions by another class.
Keywords: approximation of operators, analytic functions.
@article{TIMM_2012_18_4_a0,
     author = {R. R. Akopyan},
     title = {Best approximation for the analytic continuation operator on the class of analytic functions in a~ring},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--13},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a0/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Best approximation for the analytic continuation operator on the class of analytic functions in a ring
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 3
EP  - 13
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a0/
LA  - ru
ID  - TIMM_2012_18_4_a0
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Best approximation for the analytic continuation operator on the class of analytic functions in a ring
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 3-13
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a0/
%G ru
%F TIMM_2012_18_4_a0
R. R. Akopyan. Best approximation for the analytic continuation operator on the class of analytic functions in a ring. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a0/

[1] Akopyan R. R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v polose funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 46–54

[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[3] Koosis P., Introduction to $H_p$ Spaces, Cambridge University Press, Cambridge, 1998, 287 pp. | MR | Zbl

[4] Osipenko K. Yu., Optimal recovery of analytic functions, NJVA Science Publ. Inc., Huntington, 2000, 229 pp.

[5] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 398 pp.

[6] Stechkin S. B., “Neravenstva mezhdu normami proizvodnykh proizvolnoi funktsii”, Acta Sci. Math., 26:3–4 (1965), 225–230 | Zbl

[7] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[8] Taikov L. V., “Analiticheskoe prodolzhenie funktsii s oshibkoi”, Tr. MIAN SSSR, 109, 1971, 61–64 | MR | Zbl

[9] Taikov L. V., “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Mat. zametki, 1:2 (1967), 155–162 | MR | Zbl