Asymptotics of a~solution to an optimal boundary control problem in a~bounded domain
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 75-82

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of optimal boundary control of solutions of an elliptic-type equation with a small coefficient at the Laplace operator and integral constraints on the control in a bounded domain with smooth boundary is considered. A complete asymptotic expansion of the solution of this problem in powers of the small parameter is obtained.
Keywords: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
@article{TIMM_2012_18_3_a8,
     author = {A. R. Danilin and A. P. Zorin},
     title = {Asymptotics of a~solution to an optimal boundary control problem in a~bounded domain},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a8/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - A. P. Zorin
TI  - Asymptotics of a~solution to an optimal boundary control problem in a~bounded domain
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 75
EP  - 82
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a8/
LA  - ru
ID  - TIMM_2012_18_3_a8
ER  - 
%0 Journal Article
%A A. R. Danilin
%A A. P. Zorin
%T Asymptotics of a~solution to an optimal boundary control problem in a~bounded domain
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 75-82
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a8/
%G ru
%F TIMM_2012_18_3_a8
A. R. Danilin; A. P. Zorin. Asymptotics of a~solution to an optimal boundary control problem in a~bounded domain. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 75-82. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a8/