On direct products of classes of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 67-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

All groups considered are finite. A set $\{\mathfrak F_i\mid i\in I\}$ of non-empty classes of groups $\mathfrak F_i$ is called orthogonal (Skiba, 1999) if: (1) either $|I|=1$ or $|I|>1$ and (2) $\mathfrak F_i\cap\mathfrak F_j=(1)$ for all $i,j\in I$, $i\ne j$. For any orthogonal system of classes $\{\mathfrak F_i\mid i\in I\}$ we denote by $\bigotimes_{i\in I}\mathfrak F_i$ the set of all groups isomorphic to groups of the form $A_1\times A_2\times\dots\times A_t$, where $A_1\in\mathfrak F_{i_1}$, $A_2\in\mathfrak F_{i_2}$, $\dots$, $A_t\in\mathfrak F_{i_t}$ for some $i_1,i_2,\dots,i_t\in I$. Let $\mathfrak F$ be a non-empty class of groups. The class $\mathfrak F$ is said to be the direct product of classes $\{\mathfrak F_i\mid i\in I\}$ if the set $\{\mathfrak F_i\mid i\in I\}$ is an orthogonal system of classes and $\bigotimes_{i\in I}\mathfrak F_i$. Let $\mathfrak F=\bigotimes_{i\in I}\mathfrak F_i$, where $\mathfrak F_i$ is a Fitting class. We prove that the Fitting class $\mathfrak F$ is $n$-multiply $\omega$-local if and only if each of the Fitting classes $\mathfrak F_i$ is $n$-multiply $\omega$-local.
Keywords: finite group, Fitting class, $n$-multiply $\omega$-local Fitting class.
@article{TIMM_2012_18_3_a7,
     author = {N. N. Vorob'ev},
     title = {On direct products of classes of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--74},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a7/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
TI  - On direct products of classes of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 67
EP  - 74
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a7/
LA  - ru
ID  - TIMM_2012_18_3_a7
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%T On direct products of classes of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 67-74
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a7/
%G ru
%F TIMM_2012_18_3_a7
N. N. Vorob'ev. On direct products of classes of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 67-74. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a7/

[1] Ballester-Bolinches A., Doerk K., Perez-Ramos M. D., “On the lattice of $\mathfrak F$-subnormal subgroups”, J. Algebra, 148:1 (1992), 42–52 | DOI | MR | Zbl

[2] Ballester-Bolinches A., Ezquerro L. M., Classes of finite groups, Springer, Dordrecht, 2006, 385 pp. | MR

[3] Doerk K., Hawkes T., Finite soluble groups, Ser. De Gruyter Expo. Math., 4, Walter de Gruyter Co, Berlin–New York, 1992, 891 pp. | MR

[4] Guo Wenbin, The theory of classes of groups, Science Press, Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000, 258 pp. | MR

[5] Guo Wenbin, Shum K. P., “On totally local formations of groups”, Comm. Algebra, 30:5 (2002), 2117–2131 | DOI | MR | Zbl

[6] Safonov V. G., “On $\tau$-closed totally saturated group formations with Boolean sublattices”, Algebra and Discrete Math., 2008, no. 2, 109–122 | MR | Zbl

[7] Vasilev A. F., Kamornikov C. F., Semenchuk V. N., “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i drugie primykayuschie algebraicheskie struktury, Sb. tr., ed. N. S. Chernikov, In-t matematiki AN Ukrainy, Kiev, 1993, 27–54 | MR

[8] Vedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 2, 2001, 55–71 | MR | Zbl

[9] Vedernikov V. A., “O lokalnykh formatsiyakh konechnykh grupp”, Mat. zametki, 46:6 (1989), 32–37 | MR | Zbl

[10] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskret. matematika, 13:3 (2001), 125–144 | DOI | MR | Zbl

[11] Vorobev H. H., “O pryamykh razlozheniyakh $\omega$-lokalnykh formatsii i klassov Fittinga”, Vestn. Vitebskogo un-ta, 1997, no. 3, 55–58 | MR

[12] Vorobev H. H., Skiba A. N., “O bulevykh reshetkakh $n$-kratno lokalnykh klassov Fittinga”, Sib. mat. zhurn., 40:3 (1999), 523–530 | MR

[13] Go Venbin, “Ob odnom voprose teorii kratno lokalnykh formatsii”, Sib. mat. zhurn., 45:6 (2004), 1263–1270 | MR | Zbl

[14] Kamozina O. V., “Bulevy reshetki kratno $\Omega$-bikanonicheskikh klassov Fittinga”, Diskret. matematika, 14:3 (2002), 47–53 | DOI | MR | Zbl

[15] V. A. Artamonov, V. N. Salii, L. A. Skornyakov [i dr.], Obschaya algebra, v. 2, ed. L. A. Skornyakov, Nauka, M., 1991, 480 pp.

[16] Saveleva N. V., Vorobev N. T., “O probleme suschestvovaniya maksimalnykh podklassov Fittinga v minimalnom $\pi$-normalnom klasse Fittinga”, Vestsi NAN Belarusi. Cer. fiz.-mat. navuk, 2009, no. 1, 29–37 | MR

[17] Skachkova Yu. A., “Bulevy reshetki kratno $\Omega$-rassloennykh formatsii”, Diskret. matematika, 14:3 (2002), 42–46 | DOI | MR | Zbl

[18] Ckiba A. N., “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Tr. Gomelskogo seminara, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[19] Ckiba A. N., “Kharakterizatsiya konechnykh razreshimykh grupp zadannoi nilpotentnoi dliny”, Voprosy algebry, 3, 1987, 21–31

[20] Ckiba A. N., “O lokalnykh formatsiyakh s dopolnyaemymi lokalnymi podformatsiyami”, Izv. vuzov. Matematika, 1994, no. 10, 75–80 | MR | Zbl

[21] Ckiba A. N., “O dopolnyaemykh podformatsiyakh”, Voprosy algebry, 9, 1996, 114–118

[22] Ckiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR

[23] Shemetkov L. A., Ckiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR | Zbl

[24] Shemetkov L. A., Ckiba A. N., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Mat. tr., 2:2 (1999), 114–147 | MR | Zbl