On some problems of choosing the order in which a~control system approaches a~group of objects
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 56-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a method for choosing the order in which a nonlinear third-order system approaches a group of moving points in a minimum time and a method for constructing a shortest polygonal path for the sequential connection of rectangles in the case of obstacles. connecting rectangles if there are restrictions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
control, nonlinear object, sequential approach.
                    
                  
                
                
                @article{TIMM_2012_18_3_a6,
     author = {Yu. I. Berdyshev},
     title = {On some problems of choosing the order in which a~control system approaches a~group of objects},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--66},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/}
}
                      
                      
                    TY - JOUR AU - Yu. I. Berdyshev TI - On some problems of choosing the order in which a~control system approaches a~group of objects JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 56 EP - 66 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/ LA - ru ID - TIMM_2012_18_3_a6 ER -
Yu. I. Berdyshev. On some problems of choosing the order in which a~control system approaches a~group of objects. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 56-66. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/
