On some problems of choosing the order in which a control system approaches a group of objects
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 56-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a method for choosing the order in which a nonlinear third-order system approaches a group of moving points in a minimum time and a method for constructing a shortest polygonal path for the sequential connection of rectangles in the case of obstacles. connecting rectangles if there are restrictions.
Keywords: control, nonlinear object, sequential approach.
@article{TIMM_2012_18_3_a6,
     author = {Yu. I. Berdyshev},
     title = {On some problems of choosing the order in which a~control system approaches a~group of objects},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--66},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/}
}
TY  - JOUR
AU  - Yu. I. Berdyshev
TI  - On some problems of choosing the order in which a control system approaches a group of objects
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 56
EP  - 66
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/
LA  - ru
ID  - TIMM_2012_18_3_a6
ER  - 
%0 Journal Article
%A Yu. I. Berdyshev
%T On some problems of choosing the order in which a control system approaches a group of objects
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 56-66
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/
%G ru
%F TIMM_2012_18_3_a6
Yu. I. Berdyshev. On some problems of choosing the order in which a control system approaches a group of objects. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 56-66. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a6/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967, 497 pp. | MR

[2] Berdyshev Yu. I., “Ob odnoi zadache posledovatelnogo sblizheniya nelineinoi upravlyaemoi sistemy tretego poryadka s gruppoi dvizhuschikhsya tochek”, Prikl. matematika i mekhanika, 66:5 (2002), 742–752 | MR | Zbl

[3] Berdyshev Yu. I., “O zadache posledovatelnogo obkhoda odnim nelineinym ob'ektom dvukh dvizhuschikhsya tochek”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, 2005, 43–52 | MR | Zbl

[4] Berdyshev Yu. I., “Ob odnoi nelineinoi zadache posledovatelnogo upravleniya s parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 58–63 | MR

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[6] Berdyshev Yu. I., “O vybore ocherednosti sblizheniya nelineinogo ob'ekta s gruppoi dvizhuschikhsya tochek”, Izv. RAN. Teoriya i sistemy upravleniya, 2011, no. 1, 32–39 | MR

[7] Bellman R., “Primenenie dinamicheskogo programmirovaniya k zadache o kommivoyazhere”, Kibernet. sb., 9, Mir, M., 1964, 219–228

[8] Korotaeva L. N., Sesekin A. N., Chentsov A. G., “Ob odnoi modifikatsii metoda dinamicheskogo programmirovaniya v zadache posledovatelnogo sblizheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 29:8 (1989), 1107–1113 | MR | Zbl

[9] Melamed I. I., Sergeev S. I., “Zadachi kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 1, 3–34

[10] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2008, 240 pp.

[11] Sikharulidze G. G., “Ob odnom obobschenii zadachi kommivoyazhera. I”, Avtomatika i telemekhanika, 1971, no. 8, 116–123 | MR | Zbl

[12] Berdyshev Yu. I., “O vybore marshruta v odnoi nelineinoi zadache posledovatelnogo sblizheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 8–15

[13] Chentsov A. G., “Ob optimalnoi marshrutizatsii v usloviyakh ogranichenii”, Dokl. AN, 423:3 (2008), 303–307 | MR | Zbl

[14] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Ekstremalnaya zadacha marshrutizatsii s vnutrennimi poteryami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | Zbl

[15] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Ekstremalnaya zadacha marshrutizatsii peremeschenii s ogranicheniyami i vnutrennimi poteryami”, Izv. vuzov. Matematika, 2010, no. 6, 64–81 | MR | Zbl

[16] Chentsov A. G., “Metod dinamicheskogo programmirovaniya v ekstremalnykh zadachakh marshrutizatsii s ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 3, 52–66 | MR

[17] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR | Zbl

[18] Berdyshev Yu. I., “K zadache posledovatelnogo obkhoda nelineinym upravlyaemym ob'ektom sovokupnosti gladkikh mnogoobrazii”, Differents. uravneniya i protsessy upravleniya, 1999, no. 2, 3–27

[19] Matviichuk A. R., “Zadacha ob optimalnom po bystrodeistviyu upravlenii podvizhnym ob'ektom na ploskosti pri nalichii fazovykh ogranichenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 1, 89–95 | MR | Zbl

[20] Matviichuk A. R., Ushakov V. N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR