On the conjecture about semiproportional characters in the groups~$\mathrm{Sp}_4(q)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 30-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, the author made the following conjecture: if a finite group has two semiproportional irreducible characters $\varphi$ and $\psi$, then $\varphi(1)=\psi(1)$. In the present paper, a new confirmation of the conjecture is obtained. Namely, the conjecture is verified for the symplectic groups $\mathrm{Sp}_4(q)$ and $\mathrm{PSp}_4(q)$.
Keywords: finite symplectic groups, character table, semiproportional characters, small interactions.
@article{TIMM_2012_18_3_a4,
     author = {V. A. Belonogov},
     title = {On the conjecture about semiproportional characters in the groups~$\mathrm{Sp}_4(q)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--46},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a4/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On the conjecture about semiproportional characters in the groups~$\mathrm{Sp}_4(q)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 30
EP  - 46
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a4/
LA  - ru
ID  - TIMM_2012_18_3_a4
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On the conjecture about semiproportional characters in the groups~$\mathrm{Sp}_4(q)$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 30-46
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a4/
%G ru
%F TIMM_2012_18_3_a4
V. A. Belonogov. On the conjecture about semiproportional characters in the groups~$\mathrm{Sp}_4(q)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 30-46. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a4/