@article{TIMM_2012_18_3_a30,
author = {V. Yu. Shaprynskii},
title = {The periodicity of special elements in the lattice of semigroup varieties},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {282--286},
year = {2012},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/}
}
V. Yu. Shaprynskii. The periodicity of special elements in the lattice of semigroup varieties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 282-286. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/
[1] Vernikov B. M., “Kodistributivnye elementy reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 2011, no. 7, 13–21 | MR
[2] Vernikov B. M., Shaprynskii V. Yu., “Distributivnye elementy reshetki mnogoobrazii polugrupp”, Algebra i logika, 49:3 (2010), 303–330 | MR | Zbl
[3] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Dokl. AN SSSR, 326:3 (1992), 409–413 | MR | Zbl
[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR
[5] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 2009, no. 3, 3–36 | MR | Zbl
[6] Jezek J., “Intervals in lattices of varieties”, Algebra Universalis, 6:2 (1976), 147–158 | DOI | MR | Zbl
[7] Pudlák P., Tůma J., “Every finite lattice can be embedded in the lattice of all equivalences over a finite set”, Algebra Universalis, 10:1 (1980), 74–95 | DOI | MR | Zbl
[8] Shaprynskii V. Yu., Modular and lower-modular elements of lattices of semigroup varieties, Preprint, 15 pp., arXiv: 1009.1929v1[math.GT] | MR | Zbl
[9] Shaprynskii V. Yu., Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties. III”, Acta Sci. Math. (Szeged), 76:3–4 (2010), 371–382 | MR