The periodicity of special elements in the lattice of semigroup varieties
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 282-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of $I$-element of a lattice is introduced, where $I$ is an arbitrary lattice identity. This notion generalizes practically all types of special elements of lattices considered earlier. It is proved that, if a semigroup variety is an $I$-element of the lattice of all semigroup varieties for some nontrivial lattice identity $I$ and is different from the variety of all semigroups, then it is a periodic variety. It is established that the converse is not true.
Keywords: semigroup, variety, lattice of varieties, special elements of a lattice.
@article{TIMM_2012_18_3_a30,
     author = {V. Yu. Shaprynskii},
     title = {The periodicity of special elements in the lattice of semigroup varieties},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {282--286},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/}
}
TY  - JOUR
AU  - V. Yu. Shaprynskii
TI  - The periodicity of special elements in the lattice of semigroup varieties
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 282
EP  - 286
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/
LA  - ru
ID  - TIMM_2012_18_3_a30
ER  - 
%0 Journal Article
%A V. Yu. Shaprynskii
%T The periodicity of special elements in the lattice of semigroup varieties
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 282-286
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/
%G ru
%F TIMM_2012_18_3_a30
V. Yu. Shaprynskii. The periodicity of special elements in the lattice of semigroup varieties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 282-286. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a30/

[1] Vernikov B. M., “Kodistributivnye elementy reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 2011, no. 7, 13–21 | MR

[2] Vernikov B. M., Shaprynskii V. Yu., “Distributivnye elementy reshetki mnogoobrazii polugrupp”, Algebra i logika, 49:3 (2010), 303–330 | MR | Zbl

[3] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Dokl. AN SSSR, 326:3 (1992), 409–413 | MR | Zbl

[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR

[5] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 2009, no. 3, 3–36 | MR | Zbl

[6] Jezek J., “Intervals in lattices of varieties”, Algebra Universalis, 6:2 (1976), 147–158 | DOI | MR | Zbl

[7] Pudlák P., Tůma J., “Every finite lattice can be embedded in the lattice of all equivalences over a finite set”, Algebra Universalis, 10:1 (1980), 74–95 | DOI | MR | Zbl

[8] Shaprynskii V. Yu., Modular and lower-modular elements of lattices of semigroup varieties, Preprint, 15 pp., arXiv: 1009.1929v1[math.GT] | MR | Zbl

[9] Shaprynskii V. Yu., Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties. III”, Acta Sci. Math. (Szeged), 76:3–4 (2010), 371–382 | MR