A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 26-29
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Gamma$ be an undirected connected locally finite graph such that its automorphism group is vertex-transitive and has finite vertex stabilizers. For a vertex $v$ of $\Gamma$ and a non-negative integer $n$, let $\langle B_\Gamma(v,n)\rangle_\Gamma$ denote the subgraph of $\Gamma$ generated by the ball $B_\Gamma(v,n)$ of radius $n$ with center $v$. We prove that there exists a non-negative integer $c$ (depending only on $\Gamma$) such that, for any vertices $x$ and $y$ of $\Gamma$ and any non-negative integer $r$, if an isomorphism of $\langle B_\Gamma(x,r)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r)\rangle_\Gamma$ can be extended to an isomorphism of $\langle B_\Gamma(x,r+c)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r+c)\rangle_\Gamma$, then it can also be extended to an automorphism of $\Gamma$. Furthermore, we give a “formula” for $c$. In such a form the result can also be of interest for finite graphs $\Gamma$.
Keywords:
vertex-symmetric graph, extension of automorphism.
@article{TIMM_2012_18_3_a3,
author = {V. I. Trofimov},
title = {A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {26--29},
year = {2012},
volume = {18},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/}
}
TY - JOUR AU - V. I. Trofimov TI - A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 26 EP - 29 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/ LA - en ID - TIMM_2012_18_3_a3 ER -
V. I. Trofimov. A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 26-29. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/
[1] Trofimov V. I., “O prodolzhenii izomorfizma podgrafov do avtomorfizma grafa”, Mezhdunar. konf. po algebre i geometrii, posvyaschennaya 80-letiyu so dnya rozhdeniya A. I. Starostina, Tez. dokl., Ekaterinburg, 2011, 162–163