A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 26-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be an undirected connected locally finite graph such that its automorphism group is vertex-transitive and has finite vertex stabilizers. For a vertex $v$ of $\Gamma$ and a non-negative integer $n$, let $\langle B_\Gamma(v,n)\rangle_\Gamma$ denote the subgraph of $\Gamma$ generated by the ball $B_\Gamma(v,n)$ of radius $n$ with center $v$. We prove that there exists a non-negative integer $c$ (depending only on $\Gamma$) such that, for any vertices $x$ and $y$ of $\Gamma$ and any non-negative integer $r$, if an isomorphism of $\langle B_\Gamma(x,r)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r)\rangle_\Gamma$ can be extended to an isomorphism of $\langle B_\Gamma(x,r+c)\rangle_\Gamma$ onto $\langle B_\Gamma(y,r+c)\rangle_\Gamma$, then it can also be extended to an automorphism of $\Gamma$. Furthermore, we give a “formula” for $c$. In such a form the result can also be of interest for finite graphs $\Gamma$.
Keywords: vertex-symmetric graph, extension of automorphism.
@article{TIMM_2012_18_3_a3,
     author = {V. I. Trofimov},
     title = {A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--29},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 26
EP  - 29
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/
LA  - en
ID  - TIMM_2012_18_3_a3
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 26-29
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/
%G en
%F TIMM_2012_18_3_a3
V. I. Trofimov. A note on the extendability of an isomorphism of subgraphs of a~graph to an automorphism of the graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 26-29. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a3/