On the possibility of constructing a curve for a given group of homeomorphisms
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 218-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following problem is considered: for a given group of homeomorphisms of a topological space, it is required to determine if there exists in this space a curve for which the given group is a group of oriented homeomorphisms. A constructive solution of the problem is given for a wide class of groups of homeomorphisms of linearly connected topological spaces. In a number of cases, the questions on the uniqueness of the constructed curve and on the kernel of action of the group on the curve are investigated.
Keywords: curve, image of a curve, topological space, group of homeomorphisms, linear connectivity.
@article{TIMM_2012_18_3_a25,
     author = {E. A. Rogozinnikov},
     title = {On the possibility of constructing a~curve for a~given group of homeomorphisms},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--229},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a25/}
}
TY  - JOUR
AU  - E. A. Rogozinnikov
TI  - On the possibility of constructing a curve for a given group of homeomorphisms
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 218
EP  - 229
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a25/
LA  - ru
ID  - TIMM_2012_18_3_a25
ER  - 
%0 Journal Article
%A E. A. Rogozinnikov
%T On the possibility of constructing a curve for a given group of homeomorphisms
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 218-229
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a25/
%G ru
%F TIMM_2012_18_3_a25
E. A. Rogozinnikov. On the possibility of constructing a curve for a given group of homeomorphisms. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 218-229. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a25/

[1] Aminov Yu. A., Differentsialnaya geometriya i topologiya krivykh, Nauka, M., 1987, 160 pp. | MR | Zbl

[2] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 281 pp. | MR

[3] Kondratev A. S., Gruppy i algebry Li, Izd-vo UrO RAN, Ekaterinburg, 2009, 310 pp.

[4] Nikulchev E. V., “Gruppovoi analiz i modelirovanie dinamicheski slozhnykh sistem”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, Tr. 8-go Mezhdunar. seminara, posvyasch. pamyati E. S. Pyatnitskogo, IPU RAN, M., 2004, 134–136

[5] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Edinorial URSS, M., 2003, 664 pp.

[6] Rogozinnikov E. A., Geometriya obobschennykh mnogoobrazii. Krivye na obobschennykh mnogoobraziyakh, ikh gruppy dvizhenii i podobii, Dep. v VINITI 05.10.2010, No 570-V2010, Ural. gos. un-t, 39 pp.

[7] Rogozinnikov E. A., “Gruppy dvizhenii krivykh s postoyannymi i periodicheskimi kriviznami”, Vestn. UrGUPS, 2011, no. 2(10), 65–72

[8] Rogozinnikov E. A., Gruppy preobrazovanii krivykh. Krivye vdol mnogoobrazii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrücken, 2011, 104 pp.

[9] Rogozinnikov E. A., Gruppy preobrazovanii otobrazhenii i opredelyaemost krivykh gruppami preobrazovanii, Dep. v VINITI 18.02.2011, No 74-V2011, Ural. gos. un-t, 26 pp.

[10] Rogozinnikov E. A., “O svyazi geometricheskikh svoistv krivykh so svoistvami ikh grupp dvizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 227–233

[11] Rozov N. Kh., “Feliks Klein i ego erlangenskaya programma”, Mat. prosv. Ser. 3, 3, MTsNMO, M., 1999, 49–55

[12] Sizyi S. V., Lektsii po differentsialnoi geometrii, Fizmatlit, M., 2007, 376 pp.

[13] Sizyi S. V., Rogozinnikov E. A., “O gruppakh dvizhenii krivykh na mnogoobraziyakh”, Vestn. UrGUPS, 2010, no. 2(6), 47–56

[14] Shnirelman A. I., “O geometrii gruppy diffeomorfizmov i dinamike idealnoi neszhimaemoi zhidkosti”, Mat. sb., 128(170):1(9) (1985), 82–109 | MR | Zbl