Representation of lattices by congruence lattices of semigroups without idempotents
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 208-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that every distributive algebraic lattice such that its compact elements form a lattice with unit can be represented as the congruence lattice of some semigroup without idempotents. This implies that every distributive algebraic lattice with at most countably many compact elements is also representable as the congruence lattice of a semigroup without idempotents.
Keywords: congruence lattice, semigroup, representation of lattices.
@article{TIMM_2012_18_3_a24,
     author = {A. L. Popovich},
     title = {Representation of lattices by congruence lattices of semigroups without idempotents},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--217},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/}
}
TY  - JOUR
AU  - A. L. Popovich
TI  - Representation of lattices by congruence lattices of semigroups without idempotents
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 208
EP  - 217
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/
LA  - ru
ID  - TIMM_2012_18_3_a24
ER  - 
%0 Journal Article
%A A. L. Popovich
%T Representation of lattices by congruence lattices of semigroups without idempotents
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 208-217
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/
%G ru
%F TIMM_2012_18_3_a24
A. L. Popovich. Representation of lattices by congruence lattices of semigroups without idempotents. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 208-217. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/

[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977, 416 pp. | MR

[2] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v 2 t., v. 1, Mir, M., 1972, 285 pp. ; т. 2, 422 с. | Zbl

[3] Popovich A. L., Repnitskii V. B., “O predstavlenii reshetok reshetkami kongruentsii polugrupp”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 199–208

[4] Freese R., Lampe W. A., Taylor W., “Congruence lattices of algebras of fixed similarity type, I”, Pacific J. Math., 82 (1979), 59–68 | DOI | MR | Zbl

[5] Gärtzer G., General lattice theory, eds. B. A. Davey [et. al.], Birkhäuser Verlag, Basel, 1998, 663 pp. | MR

[6] Gärtzer G., Schmidt E. T., “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR

[7] Lampe W. A., “Congruence lattices of algebras of fixed similarity type, II”, Pacific J. Math., 103 (1982), 475–508 | DOI | MR | Zbl

[8] Lampe W. A., “Results and problems on congruence lattice representations”, Algebra Univers., 55 (2006), 127–135 | DOI | MR | Zbl

[9] Pudlak P., “On congruence lattices of lattices”, Algebra Univers., 20 (1985), 96–114 | DOI | MR | Zbl

[10] Repnitskiǐ V., Tůma J., “Intervals in subgroup lattices of countable locally finite groups”, Algebra Univers., 59 (2008), 49–71 | DOI | MR | Zbl

[11] Ružička P., Tůma J., Wehrung F., “Distributive congruence lattices of congruence-permutable algebras”, J. Algebra, 311:1 (2007), 96–116 | DOI | MR

[12] Schmidt E. T., “The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1983), 153–168 | MR

[13] Taylor W., “Some applications of the term condition”, Algebra Univers., 14 (1982), 11–24 | DOI | MR | Zbl

[14] Tůma J., “Semilattice-valued measures”, Contributions to General Algebra, 18, Verlag Johannes Heyn, Klagenfurt, 2008, 199–210 | MR

[15] Wehrung F., “A solution to Dilworths congruence lattice problem”, Adv. Math., 216:2 (2007), 610–625 | DOI | MR | Zbl