@article{TIMM_2012_18_3_a24,
author = {A. L. Popovich},
title = {Representation of lattices by congruence lattices of semigroups without idempotents},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {208--217},
year = {2012},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/}
}
A. L. Popovich. Representation of lattices by congruence lattices of semigroups without idempotents. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 208-217. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a24/
[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977, 416 pp. | MR
[2] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v 2 t., v. 1, Mir, M., 1972, 285 pp. ; т. 2, 422 с. | Zbl
[3] Popovich A. L., Repnitskii V. B., “O predstavlenii reshetok reshetkami kongruentsii polugrupp”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 199–208
[4] Freese R., Lampe W. A., Taylor W., “Congruence lattices of algebras of fixed similarity type, I”, Pacific J. Math., 82 (1979), 59–68 | DOI | MR | Zbl
[5] Gärtzer G., General lattice theory, eds. B. A. Davey [et. al.], Birkhäuser Verlag, Basel, 1998, 663 pp. | MR
[6] Gärtzer G., Schmidt E. T., “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR
[7] Lampe W. A., “Congruence lattices of algebras of fixed similarity type, II”, Pacific J. Math., 103 (1982), 475–508 | DOI | MR | Zbl
[8] Lampe W. A., “Results and problems on congruence lattice representations”, Algebra Univers., 55 (2006), 127–135 | DOI | MR | Zbl
[9] Pudlak P., “On congruence lattices of lattices”, Algebra Univers., 20 (1985), 96–114 | DOI | MR | Zbl
[10] Repnitskiǐ V., Tůma J., “Intervals in subgroup lattices of countable locally finite groups”, Algebra Univers., 59 (2008), 49–71 | DOI | MR | Zbl
[11] Ružička P., Tůma J., Wehrung F., “Distributive congruence lattices of congruence-permutable algebras”, J. Algebra, 311:1 (2007), 96–116 | DOI | MR
[12] Schmidt E. T., “The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1983), 153–168 | MR
[13] Taylor W., “Some applications of the term condition”, Algebra Univers., 14 (1982), 11–24 | DOI | MR | Zbl
[14] Tůma J., “Semilattice-valued measures”, Contributions to General Algebra, 18, Verlag Johannes Heyn, Klagenfurt, 2008, 199–210 | MR
[15] Wehrung F., “A solution to Dilworths congruence lattice problem”, Adv. Math., 216:2 (2007), 610–625 | DOI | MR | Zbl