Iterative methods for equilibrium search in the partial Arrow–Debreu–Stone exchange model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 201-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Iterative methods are proposed for equilibrium price search in the Arrow–Debre model with Stone's multiplicative utility functions. The methods converge under weak initial assumptions and allow for a conceptual interpretation in economic terms. Strict convergence theorems supported by numerical experiments are presented. The paper continues the author's investigations conducted earlier for Cobb–Douglas multiplicative functions.
Keywords: economic equilibrium, exchange model, multiplicative utility function, split methods.
@article{TIMM_2012_18_3_a23,
     author = {L. D. Popov},
     title = {Iterative methods for equilibrium search in the partial {Arrow{\textendash}Debreu{\textendash}Stone} exchange model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--207},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a23/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Iterative methods for equilibrium search in the partial Arrow–Debreu–Stone exchange model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 201
EP  - 207
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a23/
LA  - ru
ID  - TIMM_2012_18_3_a23
ER  - 
%0 Journal Article
%A L. D. Popov
%T Iterative methods for equilibrium search in the partial Arrow–Debreu–Stone exchange model
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 201-207
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a23/
%G ru
%F TIMM_2012_18_3_a23
L. D. Popov. Iterative methods for equilibrium search in the partial Arrow–Debreu–Stone exchange model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 201-207. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a23/

[1] Arrow K. J., Debreu G., “Existence of equilibrium for a competitive economy”, Econometrica, 25 (1954), 265–290 | DOI | MR

[2] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964, 835 pp. | Zbl

[3] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 519 pp.

[4] Lankaster K., Matematicheskaya ekonomika, Sov. radio, M., 1972, 464 pp. | Zbl

[5] Makarov V. L., Rubinov A. M., Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka, M., 1973, 338 pp. | MR

[6] Intriligator M., Matematicheskie metody optimizatsii i matematicheskaya ekonomika, Progress, M., 1975, 597 pp.

[7] Shafer W. J., Sonnenschein H. F., “Some theorems on the existence of competitive equilibrium”, J. Economic Theory, 11 (1975), 83–93 | DOI | MR | Zbl

[8] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983, 248 pp. | MR

[9] Eaves B. C., “Finite solution of pure trade markets with Cobb–Douglas utilities”, Math. Program. Study, 23 (1985), 226–239 | DOI | MR | Zbl

[10] Aliprantis C. D., Brown D. J., Burkinshaw O., Existence and optimality of competitive equilibria, Springer, Berlin, 1990, 296 pp. | MR

[11] Polterovich V. M., Ekonomicheskoe ravnovesie i khozyaistvennyi mekhanizm, Nauka, M., 1990, 254 pp.

[12] Popov L. D., “K metodam otyskaniya ravnovesiya v modelyakh Errou–Debre”, Dinamika neodnorodnykh sistem, Tr. In-ta sistemnogo analiza RAN, 30, no. 12, 2008, 116–124

[13] Streng G., Lineinaya algebra i ee primeneniya, Mir, M., 1989, 446 pp.