Lie rings defined by the root system and family of additive subgroups of the main ring
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 195-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a given carpet of additive subgroups, a carpet subring of the Chevalley algebra is defined. For this subring, an analog of the known question on the absence of new root elements in a carpet subgroup is answered and necessary and sufficient conditions of its invariance with respect to the corresponding carpet subgroup are found.
Keywords: Chevalley group and algebra, carpet of additive subgroups, Lie ring.
@article{TIMM_2012_18_3_a22,
     author = {Ya. N. Nuzhin},
     title = {Lie rings defined by the root system and family of additive subgroups of the main ring},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--200},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a22/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
TI  - Lie rings defined by the root system and family of additive subgroups of the main ring
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 195
EP  - 200
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a22/
LA  - ru
ID  - TIMM_2012_18_3_a22
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%T Lie rings defined by the root system and family of additive subgroups of the main ring
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 195-200
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a22/
%G ru
%F TIMM_2012_18_3_a22
Ya. N. Nuzhin. Lie rings defined by the root system and family of additive subgroups of the main ring. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 195-200. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a22/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982, 288 pp. | MR | Zbl

[2] Borevich Z. I., “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauch. sem. LOMI AN SSSR, 64, 1976, 12–29 | MR | Zbl

[3] Levchuk V. M., “Parabolicheskie podgruppy nekotorykh $ABA$-grupp”, Mat. zametki, 31:4 (1982), 509–525 | MR | Zbl

[4] Nuzhin Ya. N., “Faktorizatsiya kovrovykh podgrupp grupp Shevalle nad kommutativnymi koltsami”, Zhurn. Sib. federal. un-ta, 4:4 (2011), 527–535

[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp. URL: http://math.nsc.ru/~alglog/17kt.pdf

[6] Levchuk V. M., “Porozhdayuschie mnozhestva kornevykh elementov grupp Shevalle nad lokalno konechnym polem”, Algebra i logika, 22:4 (1983), 48–58 | MR

[7] Koibaev V. A., “Elementarnye seti v lineinykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 134–141

[8] Carter R., Simple groups of Lie type, Wiley and Sons, New York, 1972, 332 pp. | MR | Zbl

[9] Dickson L. E., Linear groups with an exposition of the Galois field theory, Teubner, Leipzig, 1901, 326 pp. | Zbl

[10] Gorenstain D., Finite groups, Harper and Row, New York, 1968, 520 pp. | MR

[11] Borevich Z. I., “O podgruppakh lineinykh grupp, bogatykh transvektsiyami”, Zap. nauch. sem. LOMI AN SSSR, 75, 1978, 22–31 | MR | Zbl