On strongly regular graphs with $b_124$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 187-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma$ be a connected edge-regular graph with parameters $(v,k,\lambda)$, and let $b_1=k-\lambda-1$. It is well-known that, if $b_1=1$, then $\Gamma$ is either a polygon or a complete multipartite graph with parts of order 2. Graphs with $b_1\le4$ were classified earlier. The investigation of graphs even in the case $b_1=5$ involves great difficulties. However, for strongly regular graphs, the situation is much simpler. In this paper, we classify strongly regular graphs with $b_124$.
Keywords: strongly regular graph, partial geometry, pseudo geometric graph.
@article{TIMM_2012_18_3_a21,
     author = {M. S. Nirova},
     title = {On strongly regular graphs with $b_1<24$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--194},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a21/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - On strongly regular graphs with $b_1<24$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 187
EP  - 194
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a21/
LA  - ru
ID  - TIMM_2012_18_3_a21
ER  - 
%0 Journal Article
%A M. S. Nirova
%T On strongly regular graphs with $b_1<24$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 187-194
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a21/
%G ru
%F TIMM_2012_18_3_a21
M. S. Nirova. On strongly regular graphs with $b_1<24$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 187-194. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a21/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[2] Makhnev A. A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izv. RAN. Cer. matematicheskaya, 68:1 (2004), 159–182 | DOI | MR | Zbl

[3] Kazarina V. I., Makhnev A. A., “O reberno regulyarnykh grafakh s $b_1=5$”, Vladikavkaz. mat. zhurn., 11:1 (2009), 29–42 | MR

[4] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issledovanie operatsii, 3:3 (1996), 71–83 | MR | Zbl

[5] Bussemaker F. [et al.], “(49,16,3,6) strongly regular graph does not exist”, Europ. J. Comb., 10 (1989), 413–418 | MR | Zbl

[6] Wilbrink H. A., Brouwer A. E., “(57,14,1) strongly regular graph does not exist”, Proc. Kon. Nederl. Akad. Ser. A, 45 (1983), 117–121 | MR | Zbl

[7] Makhnev A. A., “O psevdogeometricheskikh grafakh nekotorykh chastichnykh geometrii”, Voprosy algebry, 11, Izd-vo Gomel. un-ta, Gomel, 1997, 60–67 | MR

[8] Brouwer A. E., Homepage: table of parameters of strongly regular graphs, , (data obrascheniya: 30.11.2011) http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html