Graphs of twisted subsets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 179-186
Cet article a éte moissonné depuis la source Math-Net.Ru
A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and the element $xy^{-1}x$ lies in $K$ for any $x,y\in K$. A new notion of graph of a twisted subset is introduced and the connection is investigated between the structure of the graph of a twisted subset and the structure of the group generated by this twisted subset.
Keywords:
twisted subset, twisted subgroup.
@article{TIMM_2012_18_3_a20,
author = {A. L. Myl'nikov},
title = {Graphs of twisted subsets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {179--186},
year = {2012},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a20/}
}
A. L. Myl'nikov. Graphs of twisted subsets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 179-186. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a20/
[1] Mylnikov A. L., “Konechnye perekruchennye gruppy”, Sib. mat. zhurn., 48:2 (2007), 369–375 | MR | Zbl
[2] Mylnikov A. L., “Kharakterizatsiya konechnykh prostykh neabelevykh grupp s pomoschyu skruchennykh podmnozhestv”, Sib. mat. zhurn., 51:5 (2010), 1078–1085 | MR
[3] Veprintsev D. V., “Redutsirovannye simmetrichnye podmnozhestva v gruppakh”, Mat. sistemy, 4, Krasnoyar. gos. agrarn. un-t, Krasnoyarsk, 2005, 3–12
[4] Veprintsev D. V., Mylnikov A. L., “Involyutivnaya dekompozitsiya gruppy i skruchennye podmnozhestva s malym kolichestvom involyutsii”, Sib. mat. zhurn., 49:2 (2008), 274–279 | MR | Zbl