Three S.\,N.~Chernikov's questions
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 23-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author shows: the class of all periodic non-locally finite and non-locally nilpotent $FNN$-groups is non-empty and wide; an arbitrary binary graded $\overline{IH}$-group is solvable. At the same time, the author solves three natural S. N. Chernikov's questions. Also the author establishes that a non-Chernikov non-abelian group with normal such subgroups is solvable iff it is binary graded.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
a locally nilpotent group, a locally finite group, a locally graded group, a binary graded group.
Mots-clés : an $FNN$-group
                    
                  
                
                
                Mots-clés : an $FNN$-group
@article{TIMM_2012_18_3_a2,
     author = {N. S. Chernikov},
     title = {Three {S.\,N.~Chernikov's} questions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {23--25},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a2/}
}
                      
                      
                    N. S. Chernikov. Three S.\,N.~Chernikov's questions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 23-25. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a2/
