Mots-clés : an $FNN$-group
@article{TIMM_2012_18_3_a2,
author = {N. S. Chernikov},
title = {Three {S.} {N.~Chernikov's} questions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {23--25},
year = {2012},
volume = {18},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a2/}
}
N. S. Chernikov. Three S. N. Chernikov's questions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 23-25. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a2/
[1] Chernikov S. N., “An investigation of groups with prescribed properties of their subgroups”, Ukrain. Mat. Z., 21:2 (1969), 193–209 (in Russian) | MR | Zbl
[2] Ivanov S. V., “Three theorems on the imbedding of groups”, XI All-Union symp. theory groups (Kungurka, 31.01–02.02.1989), Thes. talks, Ural Branch Acad. Sci. USSR, Sverdlovsk, 1989, 51–55 (in Russian)
[3] Ivanov S. V., Olshanskii A. Yu., “Some applications of graded diagrams in combinatorial group theory”, London Math. Soc. Lect. Note Ser., 160, 1991, 258–308 | MR | Zbl
[4] Dedekind R., “Über Gruppen, deren sämmtliche Teiler Normalteiler sind”, Math. Ann., 48 (1897), 548–561 | DOI | MR | Zbl
[5] Baer R., “Situation der Untergruppen und Structur der Gruppe”, Sitz. Ber. Heidelberg Akad., 2 (1933), 12–17 | Zbl
[6] Chernikov S. N., “Infinite non-abelian groups with the condition of invariance for infinite non-abelian subgroups”, Dokl. Akad. Nauk SSSR, 194:6 (1970), 1280–1283 (in Russian) | MR | Zbl
[7] Chernikov S. N., “Infinite non-abelian groups where all the infinite non-abelian subgroups are invariant”, Ukrain. Mat. Z., 23:5 (1971), 604–628 (in Russian) | MR | Zbl
[8] Chernikov S. N., Groups with prescribed properties of the system of subgroups, Nauka, Moskva, 1980, 384 pp. (in Russian) | MR
[9] Olshanskii A. Yu., “Infinite groups with cyclic subgroups”, Dokl. Akad. Nauk SSSR, 245:4 (1979), 785–787 (in Russian) | MR
[10] Olshanskii A. Yu., “An infinite group with subgroups of prime order”, Izvestija Akad. Nauk SSSR. Ser. Mat., 44:2 (1980), 309–321 (in Russian) | MR | Zbl
[11] Olshanskii A. Yu., Geometry of defining relations in groups, Nauka, Moskva, 1989, 448 pp. (in Russian) | MR
[12] Chernikov S. N., “Infinite groups defining by properties of the system of infinite subgroups”, VI All-Union symp. theory groups, Coll. works, Nauk. dumka, Kiev, 1980, 5–22 (in Russian) | MR
[13] Kargapolov M. I., Merzljakov Yu. I., Fundamentals of the theory of groups, Nauka, Moskva, 1972, 240 pp. (in Russian) | Zbl
[14] Chernikov N. S., “Groups with minimal conditions”, Fundamental. i prykl. matematika, 14:5 (2008), 219–235 (in Russian) | MR
[15] Chernikov N. S., “Groups with minimal conditions”, J. Math. Sci., 163:6 (2009), 774–784 | DOI | MR
[16] Miller G. A., Moreno H. C., “Non-abelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 4:4 (1903), 398–404 | DOI | MR | Zbl