On distance-regular graphs on the set of nontrivial $p$-elements of the group~$L_2(p^n)$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 164-178
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathbf\Gamma_B$ be the graph with vertex set $B=g^G\cup(g^{-1})^G$, where $g^G$ is the class of conjugate elements of order $p$ of the group $G=L_2(p^n)$, and edge set $\{\{x,y\}\mid xy^{-1}\in B\}$; here, $p$ is an odd prime such that $p^n\geq5$. This graph was studied in some of the author's papers. 
In this paper we clarify the structure of the graph $\mathbf\Gamma_B$ and describe the graph $\mathbf\Gamma_J$ whose vertex set is the set of elements of order $p$ of the group $G$ and edge set is $\{\{x,y\}\mid xy^{-1}\in J\}$, where $J$ is the class of adjoint involutions of $G$. In particular, we show that, in some cases, this graph is the union of two (isomorphic to each other) distance-regular graphs and, in other cases, its graph of $2$-distances is strongly regular.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
graph, strongly regular graph, distance-regular graph
Mots-clés : group.
                    
                  
                
                
                Mots-clés : group.
@article{TIMM_2012_18_3_a19,
     author = {I. T. Mukhamet'yanov},
     title = {On distance-regular graphs on the set of nontrivial $p$-elements of the group~$L_2(p^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {164--178},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/}
}
                      
                      
                    TY - JOUR AU - I. T. Mukhamet'yanov TI - On distance-regular graphs on the set of nontrivial $p$-elements of the group~$L_2(p^n)$ JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 164 EP - 178 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/ LA - ru ID - TIMM_2012_18_3_a19 ER -
I. T. Mukhamet'yanov. On distance-regular graphs on the set of nontrivial $p$-elements of the group~$L_2(p^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 164-178. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/
