On distance-regular graphs on the set of nontrivial $p$-elements of the group $L_2(p^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 164-178
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathbf\Gamma_B$ be the graph with vertex set $B=g^G\cup(g^{-1})^G$, where $g^G$ is the class of conjugate elements of order $p$ of the group $G=L_2(p^n)$, and edge set $\{\{x,y\}\mid xy^{-1}\in B\}$; here, $p$ is an odd prime such that $p^n\geq5$. This graph was studied in some of the author's papers. In this paper we clarify the structure of the graph $\mathbf\Gamma_B$ and describe the graph $\mathbf\Gamma_J$ whose vertex set is the set of elements of order $p$ of the group $G$ and edge set is $\{\{x,y\}\mid xy^{-1}\in J\}$, where $J$ is the class of adjoint involutions of $G$. In particular, we show that, in some cases, this graph is the union of two (isomorphic to each other) distance-regular graphs and, in other cases, its graph of $2$-distances is strongly regular.
Keywords:
graph, strongly regular graph, distance-regular graph
Mots-clés : group.
Mots-clés : group.
@article{TIMM_2012_18_3_a19,
author = {I. T. Mukhamet'yanov},
title = {On distance-regular graphs on the set of nontrivial $p$-elements of the group~$L_2(p^n)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {164--178},
year = {2012},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/}
}
TY - JOUR AU - I. T. Mukhamet'yanov TI - On distance-regular graphs on the set of nontrivial $p$-elements of the group $L_2(p^n)$ JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 164 EP - 178 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/ LA - ru ID - TIMM_2012_18_3_a19 ER -
I. T. Mukhamet'yanov. On distance-regular graphs on the set of nontrivial $p$-elements of the group $L_2(p^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 164-178. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a19/
[1] Mukhametyanov I. T., “O grafakh na klassakh $p$-elementov gruppy $L_2(p)$”, Sb. rabot prepodavatelei i studentov SGPI, Solikamsk, 1998, 209–231
[2] Mukhametyanov I. T., Blok-skhemy, assotsiirovannye s konechnymi gruppami, Dis. $\dots$ kand. fiz.-mat. nauk, Ekaterinburg, 1998, 115 pp.
[3] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987, 375 pp. | MR
[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 494 pp. | MR | Zbl
[5] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990, 380 pp. | MR