Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 155-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider graphs in which neighborhoods of vertices are isomorphic to a strongly regular graph with the second eigenvalue equal to $2$. Amply regular graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph (the strongly regular graph with parameters $(77,16,0,4)$ without triangles) are classified.
Keywords: strongly regular graph, locally $X$-graph.
Mots-clés : Mathieu graph
@article{TIMM_2012_18_3_a18,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Graphs in which neighborhoods of vertices are isomorphic to the {Mathieu} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--163},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a18/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 155
EP  - 163
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a18/
LA  - ru
ID  - TIMM_2012_18_3_a18
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 155-163
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a18/
%G ru
%F TIMM_2012_18_3_a18
A. A. Makhnev; D. V. Paduchikh. Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a18/

[1] Kabanov V. V., Makhnev A. A., Paduchikh D. V., “O silno regulyarnykh grafakh s sobstvennym znacheniem 2 i ikh rasshireniyakh”, Dokl. AN, 431:5 (2010), 583–586 | MR | Zbl

[2] Gavrilyuk A. L., Makhnev A. A., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. AN, 428:2 (2009), 157–160 | MR | Zbl

[3] Gavrilyuk A. L., Makhnev A. A., Paduchikh D. V., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Gevirttsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 35–47

[4] Kardanova M. L., Makhnev A. A., Paduchikh D. V., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khigmena–Simsa”, Dokl. AN, 439:2 (2011), 163–166 | MR | Zbl

[5] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[6] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, , 2008 http://www.gap-system.org