Interpretation of contradictory images by means of systems of linear inequalities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 144-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of interpretation of three-dimensional images from their flat projections up to the set of visible faces. For projections of convex polytopes, we present an interpretation algorithm based on maximum feasible subsystems of a certain infeasible system of linear inequalities modeling the visibility requirement for faces of the polytope. A number of model examples are given; in particular, the algorithm is applied for interpretation of the Necker cube.
Keywords: polytope, interpretation, linear inequalities.
Mots-clés : face
@article{TIMM_2012_18_3_a17,
     author = {V. D. Mazurov and A. I. Smirnov},
     title = {Interpretation of contradictory images by means of systems of linear inequalities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {144--154},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a17/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - A. I. Smirnov
TI  - Interpretation of contradictory images by means of systems of linear inequalities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 144
EP  - 154
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a17/
LA  - ru
ID  - TIMM_2012_18_3_a17
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A A. I. Smirnov
%T Interpretation of contradictory images by means of systems of linear inequalities
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 144-154
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a17/
%G ru
%F TIMM_2012_18_3_a17
V. D. Mazurov; A. I. Smirnov. Interpretation of contradictory images by means of systems of linear inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 144-154. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a17/

[1] Kozlov V. N., “Razpoznavanie izobrazhenii, predstavlyaemykh konechnym mnozhestvom tochek”, Fundam. prikl. matematika, 15:5 (2009), 95–110 | MR

[2] Yurin D. V., “Sovremennye kontseptsii vosstanovleniya trekhmernykh stsen po naboru tsifrovykh izobrazhenii: napolnenie sistem virtualnoi realnosti”, Trekhmernaya vizualizatsiya nauchnoi, tekhnicheskoi i sotsialnoi realnosti. Klasternye tekhnologii modelirovaniya, v. 1, UdGU, Izhevsk, 2009, 96–100

[3] Hartley R., Zisserman A., Multiple view geometry in computer vision, Cambridge University Press, Cambridge, 2004, 672 pp. | MR | Zbl

[4] Make3D publications, [sait] , (data obrascheniya 30.06.2012) http://make3d.cs.cornell.edu/

[5] Evin I. A., Sinergetika mozga, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 108 pp.

[6] Gregori P., Razumnyi glaz, Mir, M., 1972, 216 pp.

[7] Kaloti Dzh., Ot vospriyatiya k mysli, Mir, M., 1998, 221 pp.

[8] Shapiro L., Stokman Dzh., Kompyuternoe zrenie, Binom, Laboratoriya znanii, M., 2006, 752 pp.

[9] Eremin I. I., Sistemy lineinykh neravenstv i lineinaya optimizatsiya, UrO RAN, Ekaterinburg, 2007, 338 pp. | MR | Zbl

[10] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[11] Mazurov V. D., Matematicheskie metody raspoznavaniya obrazov, Izd-vo Ural. gos. un-ta, Sverdlovsk, 1982, 83 pp.

[12] Mazurov Vl. D., Khachai M. Yu., Sharf V. S., “O ravnovesii i neravnovesii”, Matematicheskie metody raspoznavaniya obrazov, Tr. Vseros. konf. (MMRO-14), MAKS, M., 2009, 70–73

[13] Mazurov Vl. D., “Kollektivnoe povedenie i matematicheskaya psikhologiya”, Ekonomicheskoe razvitie v sovremennom mire, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2009, 112–116

[14] Mazurov V. D., Smirnov A. I., “Ob algebraicheskom podkhode k vosstanovleniyu ob'ektov po ikh izobrazheniyam”, Avtomatizir. sistemy obrabotki izobrazhenii (ASOIz-86), Tez. dokl. Vsesoyuz. konf. (Lvov), Nauka, M., 1986, 154

[15] Mazurov V. D., Smirnov A. I., “Protivorechivaya interpretatsiya neodnoznachnykh stsen”, Metody mat. programmirovaniya i ikh program. obespechenie, Tez. dokl. nauch.-tekhn. konf., In-t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1984, 72–73