The complete reducibility of some $GF(2)A_7$-modules
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 139-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that, if $G$ is a finite group with a nontrivial normal $2$-subgroup $Q$ such that $G/Q\cong A_7$ and an element of order $5$ from $G$ acts without fixed points on $Q$, then the extension of $G$ by $Q$ is splittable, $Q$ is an elementary abelian group, and $Q$ is the direct product of minimal normal subgroups of $G$ each of which is isomorphic, as a $G/Q$-module, to one of the two $4$-dimensional irreducible $GF(2)A_7$-modules that are conjugate with respect to an outer automorphism of the group $A_7$.
Keywords: finite group, $GF(2)A_7$-module, completely reducible representation, prime graph.
@article{TIMM_2012_18_3_a16,
     author = {A. S. Kondrat'ev and I. V. Khramtsov},
     title = {The complete reducibility of some $GF(2)A_7$-modules},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--143},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a16/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - I. V. Khramtsov
TI  - The complete reducibility of some $GF(2)A_7$-modules
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 139
EP  - 143
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a16/
LA  - ru
ID  - TIMM_2012_18_3_a16
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A I. V. Khramtsov
%T The complete reducibility of some $GF(2)A_7$-modules
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 139-143
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a16/
%G ru
%F TIMM_2012_18_3_a16
A. S. Kondrat'ev; I. V. Khramtsov. The complete reducibility of some $GF(2)A_7$-modules. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 139-143. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a16/

[1] Dolfi S., Dzhabara E., Lyuchido M. S., “$C55$-gruppy”, Sib. mat. zhurn., 45:6 (2004), 1285–1298 | MR | Zbl

[2] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[3] Kondratev A. S., Khramtsov I. V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 150–158

[4] Kondratev A. S., Khramtsov I. V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 142–159

[5] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR

[6] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl

[7] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[8] J. H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Guralnick R. M., Tiep P. H., “Finite simple unisingular groups of Lie type”, J. Group Theory, 6:3 (2003), 271–310 | DOI | MR | Zbl

[10] Higman G., Odd characterizations of finite simple groups, Lecture notes, University Michigan, Michigan, 1968, 77 pp.

[11] Holt D. F., Plesken W., “$A_5$-invariant 2-groups with no trivial sections”, Quart. J. Math. Oxford. Ser. 2, 37:145 (1986), 39–47 | DOI | MR | Zbl

[12] Huppert B., Blackburn N., Finite groups, v. II, Springer-Verlag, Berlin, 1982, 531 pp. | MR | Zbl

[13] Lucido M. S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; “Addendum”, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl

[14] Martineau P., “On representations of the Suzuki groups over fields of odd characteristic”, J. London Math. Soc. (2), 6 (1972), 153–160 | DOI | MR | Zbl

[15] Martineau R. P., “On 2-modular representations of the Suzuki groups”, Amer. J. Math., 94 (1972), 55–72 | DOI | MR | Zbl

[16] Prince A. R., “On 2-groups admitting $A_5$ or $A_6$ with an element of order 5 acting fixed point freely”, J. Algebra, 49:2 (1977), 374–386 | DOI | MR | Zbl

[17] Prince A. R., “An analogue of Maschkes theorem for certain representations of $A_6$ over $GF(2)$”, Proc. Roy. Soc. Edinburgh. Sect A, 91:3–4 (1982), 175–177 | DOI | MR | Zbl

[18] Stewart W. B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR

[19] Thompson J., “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci., 45 (1959), 578–581 | DOI | MR | Zbl

[20] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[21] Zurek G., Über $A_5$-invariante 2-Gruppen, Mitt. Math. Sem. Giessen, 155, 1982, 92 pp. | MR | Zbl