On the permutability of $n$-maximal subgroups with Schmidt subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 125-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Schmidt group is a nonnilpotent group in which every proper subgroup is nilpotent. Let us fix a positive integer $n$ and assume that each $n$-maximal subgroup of a finite group $G$ is permutable with any Schmidt subgroup. We prove that, if $n\in\{1,2,3\}$, then $G$ is metanilpotent and, if $n\ge4$ and $G$ is solvable, then the nilpotent length of $G$ is at most $n-1$.
Keywords: finite group, Schmidt subgroup, nilpotent length.
Mots-clés : solvable group
@article{TIMM_2012_18_3_a14,
     author = {V. N. Knyagina and V. S. Monakhov},
     title = {On the permutability of $n$-maximal subgroups with {Schmidt} subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {125--130},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a14/}
}
TY  - JOUR
AU  - V. N. Knyagina
AU  - V. S. Monakhov
TI  - On the permutability of $n$-maximal subgroups with Schmidt subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 125
EP  - 130
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a14/
LA  - ru
ID  - TIMM_2012_18_3_a14
ER  - 
%0 Journal Article
%A V. N. Knyagina
%A V. S. Monakhov
%T On the permutability of $n$-maximal subgroups with Schmidt subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 125-130
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a14/
%G ru
%F TIMM_2012_18_3_a14
V. N. Knyagina; V. S. Monakhov. On the permutability of $n$-maximal subgroups with Schmidt subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 125-130. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a14/

[1] Knyagina V. N., Monakhov V. S., “O perestanovochnosti maksimalnykh podgrupp s podgruppami Shmidta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 126–133

[2] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[3] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Pratsi Ukrain. mat. kongresu-2001, Sekts. 1, In-t matematiki NAN Ukraini, Kiiv, 2002, 81–90 | MR | Zbl

[4] Knyagina V. N., Monakhov V. S., “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | MR | Zbl

[5] Lennox J. C., Stonehewer S. E., Subnormal subgroups of groups, Clarendon Press, Oxford, 1987, 253 pp. | MR | Zbl

[6] Gaschutz W., Lectures of subgroups of Sylow type in finite soluble groups, Notes on Pure Math., 11, Australian National University, Canberra, 1979, 100 pp. | MR

[7] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60:4 (1954), 409–434 | DOI | MR | Zbl